
27

Functional Programming in Scala and Further

-

Prof. Nodar Momtselidze *

Abstract

Scala is one of the modern multi-paradigm programming language. It involves object oriented and functional programming
paradigm possibilities. Scala has an interpreter part and an effective compiler which reduces it to JVM bytecode. Presented
article brings the ideology of functional programming in Scala and some parts of its development. Scala has uniform and
powerful abstraction concepts for different types and values; to be clear we compare some programs in Scala and Java.

Keywords: Scala, functional programming, higher order functions, traits, monad, functor, futures, streams.

Introduction

Scala is an acronym for “Scalable Language”. It means that
you can construct additional objects and functions and
manipulate with them.
 The main feature of the language - scalability is the result of
a careful integration of object-oriented and functional
language concepts.
 Scala has an interpreter part and an effective compiler which
reduces it to JVM bytecode. That is why you can use Scala
and modules in one program. compiler contains a Java Scala
subset of a compiler to make sense of such recursive Java
dependencies.

 But what are object-oriented and functional programming
concepts?
Object-oriented programming (OOP) is a programming
paradigm that represents concepts as "objects" that have data
fields (attributes that describe the object) and associated
procedures known as methods. Objects, which are usually
instances of classes, are used to interact with one another to
design applications and computer programs. C++, Objective
C, Smalltalk, Java and C#
are examples of object-oriented programming languages.

 The great idea of object-oriented programming is to make
these containers fully general, so that they can contain
operations as well as data, and that they are themselves
values that can be stored in other containers, or passed as
parameters to operations. Such containers are called
objects.But many languages admit values that are not objects,
such as the primitive values, or they allow static elds and
methods that are not members of any object. These deviations
from the pure idea of object-oriented programming look quite
harmless at rst, but they have an annoying tendency to
complicate things and limit scalability.

OOP makes easy to adapt and extend complex systems, using
 subtyping and inheritance,
 dynamic congurations, and
 classes as partial abstractions.

Functional programming (FP) is a programming paradigm that
models computation as the evaluation of expressions.
Expressions are built using functions that do not have mutable
state and side effects.

 Haskell, Curry, Idry. are examples of functional programming
languages.
 In math we have no assignment operationand loops, but we
have x=sin(a). A function relates every value of type X to
exactly one value of Y. A type is associated with a set of values.
Here type X represents the set of values (1, 2, 3) and Y
represents the set of values (a, b, c).

 In you could write the signature of such a function as Scala
follows:
If function has input type and output type , it is written as: A B A
=> in B Scala.

def f: f is denition of function

def f: X => Y

The program in FP is constructed with pure functions which
means that they do not have side effects. In Scala everything is
object, including numbers and functions. This makes pure
functions easily testable and less bug prone.
It means that pure function cannot:
· reassign a variable;
· modify data structure in place;
· set a eld on an object;
· throw an exception or halt with an error;
· read from or write to a le.
FP has restriction on writing programs, but not on programs
what could be written.
FP makes easy to build interesting things from simple parts,
using
 higher-order functions,

 1

X 2

 3

 a

b Y

 c

Journal of Technical Science and Technologies; ISSN 2298-0032; e-ISSN 2346-8270; Volume 4, Issue 2, 2015

* Prof. Nodar Momtselidze Professor at the Faculty of Computer Technologies and Engineering
International Black Sea University, E-mail: nmomtselidze@ibsu.edu.ge

 val msg2: java.lang.String =
"Hello again Scala!"

//with java.lang.String type

val lst:List = List(1, 2, 3)
//lst is immutable List

val lst: List = 1 :: 2 :: 3 :: NULL
//the same output

valnms: Map = Map((1,"Nodar"), (2,"Maria"),(3,"Ann"))
//nms is immutable Map value

Functions

Function denition starts with def
name(parameter:type,...):type = {body }

"def" starts a function denition
function name;

parameter list;

 algebraic types and pattern matching, and
 parametric polymorphism.

Scala programs tend to be short. Scala programmers have
reported reductions in number of lines of up to a factor of ten
compared to Java.

// this is Java

class MyClass {
private int index;
private String name;
public MyClass (int index, String name) {
this.index = index;
this.name = name;
}
}

//this is Scala
class MyClass(index: Int, name: String)
/* Given this code, the Scala compiler will produce a class that
has two private instance variables, an Int named index and a
String named name, and a constructor.
In short, you get essentially the same
functionality as the Java code
*/

 Scala has uniform and powerful abstraction concepts
for different types and values;
· Scala has modular mix incomposition constructs for
composing classes and traits.
· There is decomposition possibilities of objects by
pattern matching.

Variables

Scala has two types of variables . var and val

If we describe in terming of is non-nal variable which Java var
can be reassigned, but val is similar to nal variable in .Java
name; type; value

var x: Double = 5.6
//variable, could be reassigned (mutable)

val y: Double = 5.6
//value, can not be reassigned (immutable)

val msg1: String = "Hello Scala!"
//with String type

function's result type;
function body

def max(x: Int, y: Int): Int =
{ if (x > y) x else y }

A function in Scala is a “rst-class value”. You can pass it as a
parameter or return as a result.
If functions take other functions as parameters or return as
results, they are called higher-order functions.
val double = (i: Int) => { i * 2 }
//think of symbol "=>" as transformer

Scala is high-level

Programmers are constantly grappling with complexity. Scala
helps you manage complexity by letting you raise the level of
abstraction in the interfaces you design and use.
Assume you have String variable with name. You need to know
if there are uppercase characters.
// this is Java
boolean nameHasUpperCase = false;
for (int i = 0; i < name.length(); ++i) {
if(Character.isUpperCase(name.charAt(i)))
{
nameHasUpperCase = true;
break;
}
}
// this is Scala
val nameHasUpperCase =

name.exists(_.isUpperCase)

Evaluation Rules

· Call by value: evaluates the function arguments
before calling the function.
· Call by name: evaluates the function rst, and then
evaluates the arguments.
def example = 2

28

Nodar Momtselidze

Journal of Technical Science and Technologies; ISSN 2298-0032; e-ISSN 2346-8270; Volume 4, Issue 2, 2015

//combines the elements of sequence into a //single element
and creates rds as //List(3,7,11,15)

Classes

In Scala, classes are equivalent to classes in Java or C++.
Every class has a primary constructor taken from the class
parameters. Class denition elds are generated into needed
getters and setters automatically. Auxiliary constructors are
optional. They are called as this.

class Student(name: String,
scores: Int,
active: Boolean)

Assume that we have class Student. Then, let us create
Sequence (List) of Students in val st.
val st = Seq(Student("Daviad", 38, true),
Student("Mari", 95, true),
Student("Gio", 51, false))
Now, let us transform this Sequence in functional style:
 val fst = st.lter(_.score <50) .lter(_.active)
. sortBy(_.name) map(_.copy (active = false))

In this one-liner we grabbed all students whose scores are
lower than 50 and who are still active; then we changed the
active status of selected participants to false. map applies
given function (copy) to every element.

The nal output of the fds is List (Student("David", 38, true).

There are dozens of situations where similar one-statements
save functional programmers time and dramatically reduce the
amount of code in the program.
Traits
Apart from inheriting code from super-class, Scala can import
code from one or several traits. Comparing with Java, trait is
interface which can contain code.
trait Ord {
def < (that: Any): Boolean
def <= (that: Any): Boolean =

(this<that) || (this == that)
def > (that: Any): Boolean =

! (this<= that)
 def >= (that: Any): Boolean =

! (this < that)
}

Closure

A closure is a function, whose return value depends on the
value of one or more variables declared outside this function.

val b = 10
val f = (x: Int) => x + b
println(f(5)) //15

Monoid, Monadand Functor

A monoid is dened as an algebraic structure (generally, a set)
M with a binary operation (multiplication) : M × M → M and an
identity element (unit) η : 1 → M, following two axioms:

i. Associativity...
∀ a , b , c ∈ M , (a b) c = a (b c). . . .

ii.Identity
∃ e ∈ M ∀ a ∈ M, e a = a e = a. .

// evaluated when called
val example = 2
// evaluated immediately
lazy val example = 2
// evaluated once when needed

def square(x: Double) // call by value
def square(x: => Double) // call by name
def bxFct(bindings: Int*) { ... }
// bindings is a sequence of int, containing a // varying # of
arguments

Higher order functions

Functions in Scala are objects. So you can build
functions that take function as a parameter or return
functions.Such functions are called Higher order
functions.

Assume that we want to build a function which

calculates for different values of .f

def sum(f: Int => Int, a: Int, b: Int): Int = if (a > b) 0 else
f(a) + sum(f, a + 1, b)

Than for the functions:

def id(k: Int): Int = k

def square(k: Int): Int = k * k
def

powerOfTwo(k: Int): Int =
if (k == 0) 1 else 2 * powerOfTwo(k - 1)

def sumInts(a: Int, b: Int): Int =
sum(id, a, b)

def sumSquares(a: Int, b: Int): Int = sum(square,

a, b) //

def sumPowersOfTwo(a: Int, b: Int): Int=

sum(powerOfTwo, a, b) a..........................

println(sumInts(1, 10))
 println(sumSquares(1, 10)) .
println(sumPowersOfTwo (1, 10))

Methods with collection

Let us create a collection of List type.
val lst = List(1, 2, 3, 4, 5, 6, 7, 8)
In Scala, there are a lot of methods working with List
(map, lter, reduce,...)
val sqr = lst.map(x => x * x)
//map applies function to all
//elements of List
val t = lst.lter(x => x < 6)
//lters lst and creates t as List(1,2, = v a l r d s
lst.reduce((x,y) => x + y)

M

b

a
f(k)

M

b

a
// k

// kM

b

a

2

// 2kM

b

a and print.

29

Nodar Momtselidze

Journal of Technical Science and Technologies; ISSN 2298-0032; e-ISSN 2346-8270; Volume 4, Issue 2, 2015

Futures are convenient abstractions for concurrent
programming. Futures give us possibility to execute
computations in parallel and receive result at some point of
Futures.
val fut = future {slowComputation}
 fut.onComplete {
 case Success => useSuccess(result)
 case Failure => useError(exception)
}

You can convert futures to list and back.
List (Future(f1), Future(f2), ...Future(fn)
Futures (List(f1,f2,...fn))

or reduce list of futures to new future
Future.reduce (list)(f)

And many other technologies...

Scala comes with a lot of different libraries, which give
possibility to construct huge number of computation
technologies.
Conclusion

References:

Martin Odersky, M. (2014).Scala by Examples. Retrieved date
is needed from
http://www.scala-lang.org/docu/les/ScalaByExample.pdf

Haller, P.; Rytz, L.; & Odersky, M. (2010). Scala: How to make
best use of functions and objects. EPFL. Retrieved …. from
http: / / lampwww.ep.ch/~phal ler/doc/scala-tutor ia l-
sac2010.pdf

Hortsmann, C. Scala for the Impatient. Retrieved … from
http://logic.cse.unt.edu/tarau/teaching/scala_docs/scala-for-
the-impatient.pdf

Learn Scala Programming. Retrieved … froom
http://www.tutorialspoint.com/scala/
Scala School. Retreieved … from
https://twitter.github.io/scala_school/

Vasinov, V..16-months-of-functional-programming. Retrieved
… from
http://www.vasinov.com/blog/16-months-of-functional-
programming/#toc-immutable-state

Pramode, C.E. (2013). Introduction to Functional
Programming with Scala.

Retrieved … from
http://www.slideshare.net/pramode_ce/introduction-to-
functional-programming-with-scala?related=2 (pp. 15-16)

Pramode, C. E.(2015). Advanced Functional programming in
Scala. Retrieved … from
http://www.slideshare.net/pnicolas/advanced-scala-
concepts?related=1
 (pp. 3-21).

Milevski, B.(year?) What is the difference between monoid and
monad? Retrieved …. from
https://www.quora.com/What-is-the-difference-between-
monoid-and-monad

Mateolo, P. (2013). Futures in Scala. Retrieved ….from
http://www.pmatiello.me/2013/10/futures-in-scala.html

When specifying an endofunctor T : X → X (which is a functor
that maps a category to itself) as the set M, the Cartesian
product of two sets is just the composition of two endofunctors.
What you get from here is a monad with these two natural
transformations:
1. The binary operation is just a functor composition μ :
T × T → T
2. The identity element is just an identity endofunctor η :
I → T
 Satised the monoid axioms (i. & ii.), amonad can be seen
as a monoid which is an endofunctor together with two natural
transformations. The name "monad" came from "monoid" and
"triad", which indicated that it is a triple (1 functor + 2
trasformations), monoidic algebraic structure.
 In other words, monoid is a more general, abstract term.
When applying it to the category of endofunctors, we have a
monad.
A Functor accepts a function, A ⇒ B, and returns a new

function M[A] ⇒ M[B], where M is any kind.

trait Monoid[T] {
 def Zero: T
 def Op: (T,T) => T
}

trait Monad[T1] {
 def map[T2] (f: T1 =>T2): Monad[T2]
 d e f  a t M a p [T 2] (f : T 1 = > M o n a d [T 2]) :
Monad[T2]

}

∀a,b ∈ C f:a⇒b

F(a ⇒b) = F(a) ⇒F(b)

trait Functor[M[U]] {
 def map[U,V](m:M[U])(f:U=>V): M[V]
}

All these traits are useful for the composition of functions in
functional programming.

def compose(g: T => T, h: T => T) =
(x: T) => g(h(x))

Streams

To solve problems sometimes we need n numbers of an innite
sequence, but unfortunately, it is impossible to determinate
needed number of elements. Scala has data structure with
innite number of elements which are computed by demand.
Such data structure is named streams. Streams are created by
using the constant empty and the constructor cons. Streams
reduce memory usage by relocating and releasing chunk of
data allowing reuse of intermediating results.
def numsFrom (n :Int): Stream[Int] =

Stream.cons(n,numsFrom (n+1))

than calculate innite stream using:
lazy val N = numsFrom(0)
N take 10 print
The output will be:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, empty
Stream is a List whose tail is a lazy val. The main benet of
Stream is working with innite sequence, generally recursive
created.

Futures

30

Functional Programming in Scala and Further

Journal of Technical Science and Technologies; ISSN 2298-0032; e-ISSN 2346-8270; Volume 4, Issue 2, 2015

	cte-30.3.2016
	ctef-20.3.2016
	1
	cte-20.3.2016
	Binder1
	1
	11
	Blank Page

	rerer

	ctef-20.3.2016
	2
	asds

