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Abstract 

It is well known and proved already that principal singular vectors of Hankel data matrix   repeats same spectral structure and by concatena-
tion, these singular vectors allows us to gain high statistical stability and at the same time improve spectral resolution, but the main question 
arise; are they working well when frequencies are separated well enough or can they detect hidden periodicities even behind the resolution 
limit? In this article iterated SVD method is used to increase length of the time series much bigger than single SVD can do and at the same 
time increase spectral resolution and decrease noise in a new time series at more level then only one SVD can do. 
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Introduction

Spectral resolution is one of the biggest problems in digital 
signal processing and signal analyzing, while in Business 
sciences, forecasting and modeling of given time series is 
very crucial among large variety of random processes (hav-
ing trend, stationary, ergodic, purely random, etc.), process-
es  containing periodical and random components are also 
very important (A.Milnikov). Correct estimation of param-
eters, as well as ability for resolving capacity or ability to 
separate components, which are close to each other in am-
plitudes and frequencies, are very important to model data 
correctly and finally to get accurate result for future analysis 
and forecasting.

Literature Review 

There exist several approaches for spectral estimation in 
modern literature, including parametric (Auto Regressive 
(AR), Autoregressive Moving Average (ARMA) and non-
parametric models, while these methods work well in many 
cases, they all have basic limitations. Parametric method re-
quires some prior knowledge about time series (for instance 
it can be presented by autoregressive model or it can be 
stationary series by finite differencing) (Castanié, 2006), an-
other problem of parametric method  is  selection of correct 
order of AR/ARMA model, at the same time these methods 
are sensitive to noise and in case of presence of noise, it 

can give us incorrect result. Another variant of AR model is 
a Subspace method, which requires number of parameters 
to be known in advance (Hayes, 1996). On the other hand 
non-parametric method lacks the possible information about 
signal, and also it is not statistically stable, for example, Fou-
rier method does not work well for  non-stationary and non-
harmonic series, while periodogram has variance problem 
(Hayes, 1996), there exist several approaches to reduce 
variance in periodogram method, but it will also decrease it’s 
spectral resolution ability.

Problem Statement  

In this article we are considering the following model for ana-
lyzing given signal represented by some number of periodic 
components with additive white noise  
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In this model amplitudes, frequencies and phases are 
fixed and according to (Marple, 1987), this model represents 
non- stationary signal. The ratio of frequencies can be any 
number; it is not required that frequencies be harmonically 
related to each other. The main problem of spectral estima-
tion method is to effectively separate components from each 
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other and to get good spectral pictures. Various parametric 
and non-parametric methods fail in this task. Recently it was 
proved that spectral resolution and resolving capacity can 
be improved by concatenating principal singular vectors of 
Hankel data matrix after singular value decomposition and 
therefore increase total observation time, which will help 
us to identify components that are very close to each other 
(A.Milnikov), it should be noted that for given series with 
length N and sampling period  

where   is sampling frequency, total observation time 

is given by  , and spectral resolution limit is , 

while  concatenation of principal singular vectors allows us 
to increase  resolving capacity, this  method was tested on 
such situation, when the difference between two minimum  
frequency components  was high than  resolution limit of 

this signal, that means  was greater than   . In this 

article we consider the case of when this situation does not 
hold and will use an optimized and iterated SVD method to 
overcome this difficulty and to show that signal components 
can be separated by principal singular vectors even in the 
case of a difference between two   minimum components is 

definitely smaller than .

Methodology

The idea of iterated SVD method suggests the following: in-
stead of concatenating principal singular vectors of Hankel 
matrix the first time and finishing the operation, we are con-
tinuing SVD decomposition on the new time series until we 
get much better picture than it was previously. We have the 
following matrix

[1] [2] ... [ ]
[2] [3] ... [ 1]
... ... ... ...

[ ] [ 1] ... [ ]

d

x x x p
x x x p

X

x N p x N p x N

+
=
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where N samples of the time series x[1], x[2],…,x[N] are 
given. It should be noted that main task of  SSA (singular 
spectrum analysis) is to choose  window length correctly 
(James B. Elsner, 1996), that means we should choose the 
window length that is enough to hold all principal compo-
nents  and at the same time it’s singular vectors should be 
long enough to catch larger   periodicities as much as pos-
sible, after applying  SVD decomposition, which sorts  singu-
lar values and their corresponding singular vectors, leading 
singular vectors  contribute the main variance of the given 
signal and  at the same time they repeat the same spectral 
structure of the original signal, but instead of  using time 
series to concatenate these principal singular vectors for im-
proving spectral resolution just once, we repeatedly apply 
SVD decomposition on the new time series. Basic idea of 

iterated SVD is that:
Idea of iterated SVD is that:
1. It can help us to increase signal to noise ratio more 

than it was at the beginning     
 2. It   can increase data series much more in length, 

which again will have the same spectral structure as the 
original and therefore increases the spectral resolution 

As the problem of not having sufficient data sample is 
so frequent in time series analysis, iterated SVD decomposi-
tion can give us   comparatively better result than the tradi-
tional spectral estimation methods can do.

Experimental Results 

Experiment 1

In the first experimental example we took the following data 
to analyze given signal, we have 4 deterministic compo-
nents with frequencies 

 f1=13;  f2 =12.6; f3 =12.4; f4 =13.02;
With amplitudes A1 =24  A2 =A3=A4=23;
We took sample size N=294 and sampling frequency  

fs =100 Hertz, total observation time is 2.94 and frequency 
resolution limit is   0.34013605, we can easily  see that first 
and last components   are different from each other  by less 
than 0.34013605 unit, also  second and  third components 
are also separated by  less than this limit, spectral density 
of   original series is 

Figure 1. Periodogram of original series

From the picture it is clear   because of not enough sam-
ple size, periodogram was not able to detect other peaks, 
we apply SVD with window size 35; picture of singular val-
ues is given below

Figure 2. Picture of singular values

After analyzing each singular vector’s spectral struc-
ture, we saw that first four singular vector have similar spec-
tral structure as the original one, so we have concatenated  
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for instance the first and the last singular vectors using mat-
lab function vertcat, then again apply SVD decomposition of 
Hankel matrix  created from this signal, the window length in 
this case is the same  35, from the new singular vectors we 
concatenated first and second and then obtain the following 
picture  of power density from the  concatenated signal us-
ing periodogram method

Figure 3. Spectral structure of new time series

If we zoom this picture in matlab we can see definitely 
the big 4 peaks comparately to its side lobes, these side 
lobes could be explained by complex structure of frequen-
cies in the original signal, it should be mentioned that the 
length of the new series after the concatenation of the first 
two singular vectors in the second iteration is 972, while in 
the first case it was 294.

Experiment 2

In the second case we took a more complex case, like  
 f1 =18.001;  f2 =18.003;  f3 =18.002;  f4 =18.004;
In this case we can easily see that they are too close 

to each other, so that its spectral density gives us just one 
peak, amplitudes are same, using periodogram we got fol-
lowing picture of original series

Figure 4. PSD of original series

In this experiment we now use 20 as the window size 
and get the following singular value plot . (Figure 5)

We can see that it is showing two leading singular val-
ues, which represents a complex conjugated pairs and is 
indicating that there exist only one deterministic component, 
while others are hidden in noise, we analyzed the spectral 
structure of corresponding singular vectors, and because 
they showed the same spectral structure, after concatena-
tion, it was possible to discover another set of peaks as in 
the following picture. (Figure 6)

Figure 5. Plot of singular vectors

Figure 6. PSD of concatenated singular vectors 

But still the other two peaks are lost, also the second 
peak is not clearly separated from the first, so we are going 
to apply SVD to this series, window length is the same 20, 
we concatenated the first two left singular vector and got 
following

Figure 7. Improved resolution of new series 

It should be noted that the length of this new series is 
1062, while original was 294; if we continue this process, we 
get the picture in Figure 8.

If we zoom this picture, we can see that there are 4 
peaks, but because the frequencies are so close to each 
other, that picture seems to be complex and need zooming, 
the length of the new series from which we get this spectral 
structure is 2086, while the previous was 294.

Result and Conclusion

As we see from the result, iterated SVD decomposition can 
be used additionally to original SVD to increase length of 
time series and also improve the spectral resolution, it was 
shown that even in case of non-enough sample data, we 
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Figure 8

can increase the length of the sample data so that it is pos-
sible to detect frequencies that are so close even with less 
resolution. Of course the method’s ability to improve spec-
tral resolution may depend on the mathematical structure 
of the signal, amplitudes  can be  different from each other 
or there can be one dominant amplitude and the others are 
very small compared to the big one, but for  close spaced 
amplitudes and  frequencies, iterated SVD with the first SVD 
method can be used to  get accurate picture  and detect hid-
den periodicities, it should be noted for future development 
that the main question is  how big is the role of  window 
length  of Trajectory  matrix in optimization of the spectral 
structure,  not only in iterated SVD method, but also in one 
SVD approach? Empirical or theoretical method for discov-
ering suitable  dimension of  Hankel matrix  that gives us an 
invaluable result to improve spectral resolution and  stability 
of  power spectral estimation  for a given signal represented 
by periodic components.
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