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Abstract 

In this article the methodology of learning dynamic programing is described. Mentioned methodology is one of the main methods of solving 
some programming problems and foresees dividing one problem into such sub problems that using their solutions will be possible to build the 
solution of initial problem. The realization of this method needs memorizing the solutions of sub problems, thus, the dynamic tables are used. 
As well as that the solutions of sub problems and recursive dependence are explained in this article. It is showed how to use recursive depend-
ence in order to divide a problem into sub problems. Moreover, some sample problems and their solutions are included. 
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Introduction

Dynamic programming methodology is one of the main tools 
used to solve many problems in the field of informatics. It 
actually is mentioned in a lot of algorithmic books, but in a 
way, that for a beginner programmer it will be quite hard to 
understand the essence of it. That’s why while learning this 
method, it is crucial to explain the essence and the practical 
use of method understandably. 

While formulating this or that problem it is essential to 
determine the initial data of it, which is also called the pa-
rameters of the problem. 

For example, while solving linear equation ax=b, it 
means that this problem is determined by two parameters 
a and b. 

If we want to solve the problem of calculating the arith-
metic mean of some numbers, then the parameters of the 
problem will be the amount of numbers and their values.

However, we’re not yet interested in a concrete algo-
rithm of solving problems. Our goal is to learn solving the 
problem by finding the solutions of sub problems. In this 
case it is suggested to consider the algorithm as the func-
tion of converting the input data into output, which will be the 
solution of the initial problem. 

Thus the above mentioned approach explains that any 
problem can be formalized in a function, the arguments of 
which might be:

• the amount of parameters
• the values of parameters
Now and later we will consider as parameters positive 

integers only. 
Usually, one of the arguments of the problem is con-

sidered to be the amount of its parameters. In case when 
by value of this parameter it is possible to determine the 
concrete values of other parameters, the last mentioned can 
be ignored. It usually occurs when parameters are given by 
table. For example, if we want to find the sum of first K ele-

ments in the table, to solve this problem is enough to know 
just the value of one K element, the other parameters can be 
chosen from the table  (Mandaria, 2012).

As soon as the problem is formalized as a function with 
some arguments, we can bring in the statements of sub 
problems. By saying “sub problem” we mean the same prob-
lem but with the fewer amounts of parameters, or with the 
same amount of parameters, but at least one of them should 
have the value less than in initial. 

Methodology

As an example, let’s consider the problem of looking for 
the heaviest coin from ten given. To formulate the problem 
let’s determine the function “the heaviest coin”, the argu-
ments of which are the amount of coins (10) and the weight 
of each one, thus the function will have 11 arguments. For 
now, we are not interested in this function concretely. The 
most important here is that this function gives us the correct 
solution.

We can consider 9 sub problems for the given initial 
problem. The sub problems will have the fewer amounts of 
arguments:

“the heaviest coin” from one coin,
“the heaviest coin” from first two coins,
“the heaviest coin” from first three coins;
-------------------------------------------------------
“the heaviest coin” from first nine;
Thus, in our function (“the heaviest coin”) argument is 

believed to be the amount of coins, considering which it is 
possible to determine the weight of each coin. Above men-
tioned problems have the fewer amount of arguments than 
the initial problem. To be more precise in the sub problems 
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we just have one argument instead of 11, which makes the 
function way easier. Decreasing the amount of arguments 
is achieved by the correct formulation of sub problems: “the 
heaviest coin from first K coins”. That makes determining 
the exact weight of first K coins possible and thus there is 
no need in consideration of these weights as a separate ar-
gument. In case if the sub problem was formulated so “the 
heaviest coin from K coins”, their weights would be separate 
arguments, because we would not know from N coins which 
K coin is considered. That’s exactly why it is crucial to formu-
late sub problems correctly while using dynamic program-
ming methods. 

It should be mentioned, “sub problems” must not be un-
derstood as some stages of solving the initial problem, like 
organizing data input and output, data sorting or solving any 
part of the given problem. 

As we already mentioned, one of the main methods of 
solving the problems is dividing one problem into such sub 
problems that using their solutions will be possible to build 
the solution of initial problem. 

Thus, to solve the problem it might be needed to solve 
one or more sub problems.

The method of solving the initial problem on the base of 
the solutions of sub problems can be given in a dependence 
form, where the initial problem’s corresponding function’s 
values are determined by the sub problem’s corresponding 
function’s values.

Dependencies which connect the same functions, but 
with different arguments are called recursive dependen-
cies, or recursive equations.

Recursive dependencies (equations), in which the 
amount of input functions’ arguments or values from the 
right side are less than those from the left side are called 
right recursive dependencies. In case of having multiple 
arguments, decreasing the value of at least one of them, 
would be enough.

We should pay attention to the fact that dependencies 
should be determined for each possible value of arguments. 
Thus, the values of a function should be determined for ini-
tial value of parameters. 

For example, it should be mentioned that recursive de-
pendency: S(i)=S(i-1)+ai, i ≤1, which connects two functions 
with different parameters: S(i) and S(i-1), also a(i) and a(i-1) 
for any value of i would be incorrect without S(0) and a(0) 
initial values, as it is not determined for i=1.

Of course, there are more difficult dependencies that 
connect more than two functions to one another.

The next important step after the problem is divided into 
sub problems and the recursive equations are determined, 
is the method of building of solution of the initial problem by 
using the solutions of sub problems. 

One effective way of “memorizing” the solutions of sub 
problems is using the tables. The method of solving prob-
lems this way is called dynamic programming method. The 
main point of this method is that for each following value of 
parameter in order to find the solution of sub problem, and 
consequently the solution of initial task, we are using not 
the given initial data, but we find it using already found solu-
tions of sub problems for the previous values of parameter 
and preliminarily determined recursive equations (Mandaria, 
2013).

Sub problem is formulized in function form, which has 
one or more arguments. If we consider a table with the 
amount of elements equal to the amount of groups of all 
possible different values of function arguments, then we can 
match each group to the table element. When all elements 

of the table (solutions of sub problems) are known, we can 
find the solution of initial task. However, we need to consider 
more or less rational method of finding the table elements.

Generally, for one dimensional array this type of method 
is represented by sequential calculation, either started from 
the first element, or the second one. For two-dimensional ar-
ray the method of calculating the elements is a little bit more 
complex and it can differ depending on a given problem. 

Also it should be mentioned, that in case of two-dimen-
sional arrays the solution of an initial problem might not al-
ways be the finally calculated value: it may be the maximum 
element of dynamically constructed array, the last element of 
the first line and etc.  (Cormen Thomas, Leiserson Charles, 
Rivest Ronald, Stein Clifford, 2001). 

Let’s discuss several problems, which are solved using 
the methods of dynamic programming. 

Problem # 1. Find the number of sequences with the 
size of N consisting of 0-es and 1-s, where none of the two 
1-s are standing next to each other (Berov, Lapunov, Mat-
iukhin, Ponomarev, 2000).

The algorithm for solving this problem is the following: 
we should mark the number of sequences having length K 
with Fk and try to find this number by using of the numbers of 
similar sequences with lengths less than K. If the last symbol 
of such sequence of having length K is 0, then for the previ-
ous K-1symbol we can take any sequence having the length 
K-1 and the number of such sequences is Fk-1. But if the last 
symbol is 1, then, according to the conditions, the previous 
symbol has to be 0 and as its previous K-2 symbol we can 
take any sequence with the length of K-2, and its number is 
Fk-2. Therefor we get the following: Fk =Fk-1+Fk-2.

If N=10, then the corresponding single-element dynam-
ic table will be the following:

Problem # 2. From the given numeric sequence A[1..N] 
delete the minimal amount of elements, so that the elements 
left in the sequence create strongly increasing sequence (or, 
we can say, you need to find the maximal strongly increasing 
subsequence of sequence A).

For better explanation, let’s discuss clearer, but, as it 
always happens, less affective (very slow) algorithm. Let’s 
generate every subsequence of the sequence containing N 
elements and for each of them check whether it is the maxi-
mal, strongly increasing subsequence or not.

Let’s generate every number from 0 to 2N -1, find their 
binary representations and create subsequences from the 
elements of array A, with the indexes corresponding to the 
unit bits in this representation.

We’ll have 2N  such subsequences, that’s why even for 
not so big N, this algorithm will work too slowly.

Let’s say, that while generating those subsequences we 
found strongly increasing subsequence with K element in it. 
After that we only need to check the subsequences contain-
ing more then K elements. 

Let’s discus the initial sequence containing N elements. 
If it isn’t our target, then we should generate a subsequence 
with N-1 elements. If the target still isn’t found, we should 
check a subsequence with N-2 elements and so on. In the 
worst case we’ll have to discus 2N  different situations  ( Ko-
tov, Lapo, 2000).
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For solving this problem faster, we can use Dichotomy 
method for K (number of elements in subsequence).

Now, let’s discus more effective method for solving the 
given problem. Let’s initialize A, B and C arrays having the 
length N. In A[1..N] we keep the numbers from the initial se-
quence; element B[i] is the length of the target subsequence 
with the ending element A[i]. C[i] is an index of an element, 
standing directly before of A[i]. (C[i]=0, if the previous ele-
ment doesn’t exist).

If N=1, then A[1] is a subsequence we’re looking for. 
Also B[1]=1 and C[1]=0. Let’s assume that B and C arrays 
are already filled with elements from first till (i-1)th. Let’s try 
to get B[i] and C[i] elements (which means determining re-
cursive dependencies). For this we should go through the 
array A from first till (i-1)th element and look for K index, for 
which this statements will be true:

1. A[k]<A[i];
2. B[k] is maximum.

It is clear, that finding the sub sequence of maximum 
length which will be ending with A[i] element is possible if we 
write this element in the end of such subsequence that has 
the A[k] element as last. Thus, these will be the recursive 
formulas: B[i]=B[k]+1 and C[i]=k.

Let’s say we went through all N elements of A array and 
found the maximum element in B array. Let’s call the index 
of this element IndexMax. The value of this element is the 
length of longest subsequence. 

The method of finding the needed subsequence is as 
follows. Let’s say we want the output to be starting from 
the end of the subsequence and thus j is its current index. 
First of all, we state: j= IndexMax and we write A[j], which 
is the last element, as an output. The previous element of 
it in the subsequence will be C[j], That’s why its index from 
end will be determined as j= C[j]. Above mentioned opera-
tions should be repeated until j value will become 0 (which 
will mean that we’ve reached the beginning of the subse-
quence). The algorithm, written in C++ will be as follows:

C[1]=0; B[1]=1; Max=1; IndexMax=1;
For (i=2; i<=N; i++)
     {   Max1=0;
          p=0;
          for(k=1; k<=i-1; k++)
               if (A[k]<A[i] && Max1<B[k])
               {   Max1=B[k];
                    p=k; }
               C[i]=p;
               B[i]=Max1+1;
               if (B[i]>Max)
               {    Max=B[i];
                    IndexMax=I; } }
j=IndexMax;
While (j<>0)
{    Cout<<A[j]<<” “;    j=C[j];  }

Problem #3. Make a new B matrix from the given A 
matrix with size NxN, which will have the same size. Bij is 
element equal to the maximum value taken from the area of 
array A, wich is surrounded from the right side by diagonal 
passing Aij element.

The obvious solution of the problem is in using such 
procedure that by (i, j) coordinates (numbers of rows and 
columns) of elements is looking for elements with maximum 
values in the corresponding part of matrix A. 

Thus, it is not hard to notice that this statement is true 
for the first column of B matrix:

B[i][1]=A[i][ 1], i=1, 2, ..., N

The elements of other columns can be found as follow-
ing:

B[i][j]=max(A[i][ j], B[i-1][j-1], B[i][j-1], B[i+1][j-1])

Apart from that it should be mentioned that the matrix 
indexes should not exceed of the matrix boarders. 

Thus, we are building square NxN dynamic matrix, 
which is filled by columns. The elements of this matrix are 
found by comparing already known “neighbor” elements and 
corresponding element from the initial matrix. 

Problem #4. Two strings of symbols are given: x=a1a2...am 
and y=b1b2...bn. d(x, y) is used to determine the minimum 
amount of taken out, changed and put in symbols needed 
to transform x string into y string. For example, d(ptslddf, 
tsgldds)=3.

For the given x and y strings find d(x, y).
For x=a1...am and y=b1...bn, ai and bj are symbols,  

1 ≤ i ≤ m, 1 ≤ j ≤ n. Finding d(x, y) using dynamic program-
ming method is possible as follows:

We determine d[m][n] matrix elements of wich 

d[i][j]=d(a1...ai, b1...bj), 0≤ i≤m, 0≤ j≤n

It is clear that d[0, j]=j; d[i, 0]=i.
As well as that it is not hard to see that:

d[i][j]=min(d[i-1][j]+1, d[i][j-1]+1, d[i-1][j-1]+Pij),

where Pij=1 if ai≠bj and Pij=0, if ai=bj. In the above men-
tioned representation the first element of min is correspond-
ed to the deleting operation of last element ai in a1...ai_1ai 
string, after what within d[i-1][j] operations  a1...ai_1 is trans-
formed into b1...bj string. Second element is corresponded 
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to the insertion of element bi in the end of b1...bj_1 string 
which is a result of transformation of a1...ai row within d[i][j-1] 
operations. The third element corresponds to the change of 
ai element by bj element. The change occurs when ai≠bj (in 
this case Pij=1) and not occurs when ai=bj.

d[m][n] is the minimum amount of operations needed for 
the transformation of x string into y. 

The dynamic two-dimensional table for the example 
used in problem#4, where m=7, n=7, x=ptslddf, y=tsgldds 
will have form as is shown below: 

The solution of the initial problem is the last, d[7][7] ele-
ment of the table - 3. The algorithm written in C++ will be as 
follows:

for(i=1; i<=m; i++)
   d[i][0]=i;
for(j=1; j<=n; j++)
   d[0][j]=j;
for(i=1; i<=m; i++)
   for(j=1; j<=n; j++)
        d[i][j]=min(d[i-1][j]+1, d[i][j-1]+1);
        d[i][j]=min(d[i][j], d[i-1][j-1]+P);

Conclusion

It is crucial to formulate the sub problem correctly while us-
ing dynamic programming method for solving problems or 
determining recursive dependencies. We must try to de-
crease to minimum the amount of parameters used in the 
sub problems, so that the problem is formalized in a form of 
function with the minimum amount of arguments. It should 
be mentioned that dependencies should be determined for 
all possible values of arguments. That’s why the function 
values should be determined for the initial values of param-
eters. 

The corresponding to the initial problem function is de-
termined by the functions corresponding to sub problems. 
Apart from that, it is important that rational method is used 
to find the elements of dynamic table. When the elements 
of dynamic table are known, we can find the solution of the 
initial problem. 
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