
Journal of Technical Science & Technologies; ISSN: 2298-0032; e-ISSN: 2346-8270; Volume 5, Issue 2, 2016
Application of CLP (SC) in Membrane Computing

7

*Assoc. Prof. Dr., Institute of Applied Mathematics, Tbilisi State University, & Faculty of Mathematics and Computer Sciences,
 Sokhumi State University, Tbilisi, Georgia. E-mail: jeantidze@yahoo.com
**Ph. D., Institute of Applied Mathematics, Tbilisi State University, & Faculty of Computer Technologies and Engineering,
 International Black Sea University, Tbilisi, Georgia. E-mail: bdundua@gmail.com
***Assoc. Prof. Dr., Institute of Applied Mathematics, Tbilisi State University, & Faculty of Computer Technologies and Engineering,
 International Black Sea University, Tbilisi, Georgia. E-mail: mrukhaia@ibsu.edu.ge
****Ph. D., Faculty of Exact and Natural Sciences, Tbilisi State University, & School of IT, Engineering and Mathematics,
 University of Georgia, Tbilisi, Georgia. E-mail: ltibua@gmail.com

Application of CLP(SC) in Membrane Computing

Jemal ANTIDZE*
Besik DUNDUA**

Mikheil RUKHAIA***
Lali TIBUA****

Abstract

Present artcile studies semantics of the constraint logic programming built over se-
quences and contexts, called CLP(SC). Sequences and contexts are constructed over
function symbols and function variables which do not have fixed arity, together with
term, sequence, and context variables. For some function symbols, the order of the ar-
guments matter (ordered symbols). For some others, this order is irrelevant (unordered
symbols). Term variables stand for single terms, sequence variables for sequences,
context variables for contexts, and function variables for function symbols. We have
studied the semantics of CLP(SC) and showed its application in membrane computing.

Keywords: Constraint Logic Programming, Sequence Context Matching, Membrane
Computing.

Terms are considered as singleton sequences and se-
quences, as term sequences, can be concatenated to each
other. In this way, sequences can “grow horizontally” and
sequence variables help to explore it, filling gaps between
siblings. However, such a concatenation has quite a limited
power since it does not affect the depth of sequences, and
does not permit them “to grow vertically”. To address this
problem, Bojańczyk and Walukiewicz (2008) introduced so
called forest algebras, where alongside sequences (thereby
called forests), context also appears. These are sequences
with a single hole in some leaf. Contexts can be composed
by putting one of them in the hole of the other. Moreover,
context can be applied to a sequence by putting it into the
hole, resulting into a sequence. One can introduce context
variables to stand for such contexts and function variables
to stand for function symbols.

Sometimes the order of arguments in terms does not
matter. For ranked terms, the corresponding natural equa-
tional theory is given by commutativity axioms for the cor-
responding function symbols. The counterparts of com-
mutative function symbols in the unranked case are called
orderless or unordered symbols (Kutsia, 2002). The pro-

Introduction

Unranked terms are built over function symbols which do
not have a fixed arity (unranked symbols). They are nearly
ubiquitous in XML-related applications (Libkin, 2006). They
model variadic procedures used in programming languages
(Menzel, 2011; Wand, 1987). Moreover, they appear in re-
writing (Jacquemard & Rusinowitch, 2008), knowledge rep-
resentation (Menzel, 2011; ISO/IEC, 2007), theorem prov-
ing (Kutsia, 2002; Kutsia & Buchberger, 2004), and program
synthesis (Chasseur & Deville, 1997) just to name a few.

When working with unranked terms, it is a pragmatic ne-
cessity to consider variables which can be instantiated by
a finite sequences of terms (called sequences). Such vari-
ables are referred to as unranked variables or sequence
variables. We use the latter term in this paper. An example
of an unranked term is , where is an unranked
function symbol, and are sequence variables, and is
a usual individual variable which can be instantiated by
a single term. We can match this term, e.g., to the term
. in two different ways, with the substitutions
{)} and, where
is the empty sequence and is a sequence consisting
of two terms and .

(, , ,)f x f x y
(, , ,)f x f x y(, , ,)f x f x y (, , ,)f x f x y

f

(, , ,)f f a f b
)},(,,{ bfyaxx ε },),,({ ε ybxafx ε

(,)f a
(,)f a(,)f a

8

Journal of Technical Science & Technologies; ISSN: 2298-0032; e-ISSN: 2346-8270; Volume 5, Issue 2, 2016
Jemal ANTIDZE, Besik DUNDUA, Mikheil RUKHAIA, Lali TIBUA

gramming language of Mathematica (Wolfram, 2003) is
an example of a successful application in programming of
both syntactic and equational unranked pattern matching
(including unordered matching) algorithms with sequence
variables.

Our goal was to combine unranked contexts and se-
quences in a single framework, permitting both ordered and
unordered function symbols, to study constraint solving in
such a combined theory, and use it in the Constraint Logic
Programming schema. Such a language is rich, possesses
powerful means to traverse trees both horizontally and ver-
tically in a single or multiple steps, and allows the user to
naturally express data structures (e.g., trees, sequences,
multisets) and write code concisely.

We restrict CLP programs over sequences and contexts
to be well-moded. The well-modedness restriction is quite
natural for conditional rule-based programs. Log (Dun-
dua, Kutsia, & Marin, 2009) is one of such experimental
systems, which combines contexts and sequences and
requires its rules to be well-moded. Hence, our result also
shows how to express Log semantics in terms of CLP.

The paper is organized as follows. In Section 2, the no-
tions and the terminology is introduced. In Section 3, we
define the interpretation of various syntactic categories and
the declarative semantics of the CLP(SC) language. Sec-
tion 4 describes the operational semantics of CLP(SC). In
Section 5 we show how to model P systems in CLP(SC).
Finally, in Section 6 we conclude the paper.

Preliminaries

We consider the alphabet consisting of the following pair-
wise disjoint sets of symbols:

• : term variables, denoted by x,y,z,...

• : sequence variables, denoted by x,y,z,...

• : function variables, denoted by X,Y,Z,...

• : context variables, denoted by X•,Y•,Z•,...

• : unranked unordered function symbols, denoted
by fu, gu, hu,...

• : unranked ordered function symbols, denoted by
fo, go, ho,...

• the constant • (the hole),

• P : ranked predicate symbols, denoted by p,q,...

The sets of variables are countable, while the sets of
function and predicate symbols are finite. In addition, also
contains

• The propositional constants true and false, the binary
equality predicates .

• Logical connectives and quantifiers:

• Auxiliary symbols: parentheses and the comma.

Function symbols denoted by f,g,h,... are elements of

Pp

Pp

Tν
Sν

Fν
Cν
uF

oF

.,,,,,, ∀∃↔→∧∨¬

SSCSW

contextsCXSCSFC
SequencenssS

elementSequencexts

sequenceTermnttT
TermtXSFxt

n

n

)..(::

)()..(::
)0(,,::

::

)0(,,::
)()(::

1

1

=

•=

≥=

=

≥=

=

•

•

SSCSW

contextsCXSCSFC
SequencenssS

elementSequencexts

sequenceTermnttT
TermtXSFxt

n

n

)..(::

)()..(::
)0(,,::

::

)0(,,::
)()(::

1

1

=

•=

≥=

=

≥=

=

•

•

SSCSW

contextsCXSCSFC
SequencenssS

elementSequencexts

sequenceTermnttT
TermtXSFxt

n

n

)..(::

)()..(::
)0(,,::

::

)0(,,::
)()(::

1

1

=

•=

≥=

=

≥=

=

•

•

SSCSW

contextsCXSCSFC
SequencenssS

elementSequencexts

sequenceTermnttT
TermtXSFxt

n

n

)..(::

)()..(::
)0(,,::

::

)0(,,::
)()(::

1

1

=

•=

≥=

=

≥=

=

•

•

SSCSW

contextsCXSCSFC
SequencenssS

elementSequencexts

sequenceTermnttT
TermtXSFxt

n

n

)..(::

)()..(::
)0(,,::

::

)0(,,::
)()(::

1

1

=

•=

≥=

=

≥=

=

•

•

SSCSW

contextsCXSCSFC
SequencenssS

elementSequencexts

sequenceTermnttT
TermtXSFxt

n

n

)..(::

)()..(::
)0(,,::

::

)0(,,::
)()(::

1

1

=

•=

≥=

=

≥=

=

•

•

),(21 tt=

),(21 CC=

NV∃
Nvv n∃∃ 1 .},{ 1 ν⊂= nvvV NV∃ NVN /)var(∃

N∃ N∀

the set F=Fu F0 A variable is an element of the set.
V=VT VS VF VC A functor, denoted by F, is a com-
mon name for a function symbol or a function variable.

We define inductively terms, sequences, and other syn-
tactic categories over as follows:

We denote the set of terms (resp. contexts) by T(F,v)
(resp., by C(F,v)). The sets of ground (variable-free) terms
and contexts are denoted, respectively, by T(F) and C(F).
For readability, we put parentheses around sequences writ-
ing, e.g., instead of . The empty
sequence is written as . Besides the letter t, we use also r
and s to denote terms. A context C may be applied to a term
t (resp. context C`), written C[t] (resp. a context C[C`]), and
the result is the term (resp. context) obtained from C by
replacing the hole • with t (resp. with C`).

Primitive constraints are either term equalities or
context equalities and are written in infix notation,
such as t1=t2, and C1=C2. Sometimes we write e1=e2, as a
generic notation for both term equalities and context equal-
ities. We denote primitive constraints by c.

A mode for an n-ary predicate symbol p is a function mp

: . If (resp.) then the
position i is called an input position (resp. output position) of
p. We assume that the predicate has only output positions.

An atom is a formula of the form where is
an n-ary predicate symbol. Atoms are denoted by A. A literal
L is an atom or a primitive constraint. For a literal ,
where P can be also , we denote by invar(L) and outvar(L)
the sets of variables occurring in terms in the input and out-
put positions of p, respectively. We define invar(true)=Ø,
outvar(true)=Ø, invar(false)=Ø, outvar(false)=Ø

Formulas are defined as usual. A constraint is an arbi-
trary first-order formula built over true, false, and primitive
constraints. The set of free variables of a syntactic object
O is denoted by var(O). We let denote the formula
. , where denotes .
We write (resp.) for the existential (resp. universal)
closure of N. We refer to a language over the alphabet A
as L(A).

A substitution is a mapping from term variables to terms,
from sequence variables to sequences, from function vari-
ables to functors and from context variables to contexts,
such that all but finitely many terms, sequences, and func-
tion variables are mapped to themselves and all but finitely
many context variables are mapped to themselves applied
to the hole. Substitutions extend to terms, sequences, con-
texts, literals, and conjunction of literals.

A (constraint logic) program is a finite set of rules of the

),),((bxaf bxaf ,),(
ε

},{},,1{ oin → iimp =)(oimp =)(

=

),,(1 nttp Pp∈

),,(1 nttpL =
=

Journal of Technical Science & Technologies; ISSN: 2298-0032; e-ISSN: 2346-8270; Volume 5, Issue 2, 2016
Application of CLP (SC) in Membrane Computing

9

form , usually written as where A
is an atom and L1,...,Ln are literals . A goal is a formula
of the form usually written as L1,...,Ln.

A sequence of literals L1,...,Ln is called well-moded if the
following conditions hold:

1. For all , in var

2. If for some is , then

 or

 .

A conjunction of literals G is called well-moded if there
exists a well-moded sequence of literals L1,...,Ln such that
 modulo associativity and commutativity. A formula
in disjunctive normal form (DNF) is well-moded if each of its
disjuncts is well-moded. A state is
well-moded, where K’s are conjunctions of primitive con-
straints, if the formula
is well-moded. A clause is well-moded if the
following two conditions hold:

1. For all ,

 .

2. .

3. If for some is the equality ,
then
or .

A conjunction of primitive constraints is
solved if for has the form where
and does not occur neither in u nor elsewhere in K. u is the
corresponding language construct: term, sequence, func-
tor, or context. A constraint is solved, if it is either true or
a non-empty quantifier-free disjunction of solved conjunc-
tions.

Declarative Semantics

Let S and T be sets. We denote by S* the set of finite, possi-
bly empty, sequences of the elements of S, where is the
empty sequence, by Sn the set of sequences of length n of
the elements of S, and by Ts the set of functions from S to
T. Given a sequence we denote by
perm(s) the set of sequences is a
permutation of .

A structure G for a language L(A) is a tuple {D,I} made
of a non-empty carrier set of individuals and an interpre-
tation function I that maps each function symbol to
a function and each n-ary predicate symbol
..... to an n-ary relation . Given such a structure,
we also define the operation
 by for all ,
. , and . Moreover, if then
 for all and perm(s). A variable
assignment for such a structure is a function with domain
that maps term variables to elements of D; sequence vari-
able to elements of D*; function variables to functions from
D* to D; and context variables to functions from D to D.

The interpretations of out syntactic categories w.r.t. a
structure G={D,I} and variable assignment is shown be-

low. The interpretations of sequences (including terms)

and of contexts are defined as follows:

where o denotes function composition and Idd is the identity
function on D.

Note that terms are interpreted as elements of D, se-
quences as elements of D*, and contexts as elements of
DD. We may omit and write simply for the interpreta-
tion of a variable-free (i.e., ground) expression E.

Primitive constraints are interpreted w.r.t. a structure G
and variable assignment as follows: iff
. iff and
iff holds. The notions G|=N for validity
of an arbitrary formula N in G and |=N for validity of N in any
structure are defined in the standard way.

From now on we identify every context C with the func-
tion that maps every term t to the term C[t]. An intended
structure is a structure G with carrier set TF and interpreta-
tions I defined for every by It follows
that Thus, intended structures
identify terms, sequences and contexts by themselves.
Other remarkable properties of intended structures J are:

 iff and if

Given a CLP(H) program P, its Herbrand base Bp is,
naturally, the set of all atoms p(t1,...,tn), where p is an n-ary
user-defined predicate in P and Then an
intended interpretation of corresponds uniquely to a subset
of Bp. An intended model P is an intended interpretation of
P that is its model. We will write shortly H-structure, H-inter-
pretation, H-model for intended structures, interpretations,
and models, respectively.

As usual, we will write P|=G if G a goal which holds in
every model of P. Since the programs considered by us

ALL n →∧∧∀ 1 ,1 nLLA ←
).0(≥n

,0,1 ≥∧∧∃ nLL n

ni ≤≤1)(var)(var 1
1 j

i
ji LoutLin −
=⊆

iLni ,1 ≤≤ 21 WW =

)var()var(1
11 j

i
j LoutW −
=⊆

)(var)var(1
12 j

i
j LoutW −
=⊆

i
n
i LG 1=∧=

nn KKLL ∨∨ 11 ,,

∨∨∧∧∧)(11 KLL n)(1 nn KLL ∧∧∧

nLLA ,,1 ←

ni ≤≤1
)var()var()var(1

1 AinLoutLin j
i
ji

−
=⊆

)var()var()var(1 AinLoutAout j
n
j =⊆

iLni ,1 ≤≤ 21 WW =
)var()var()var(1

11 AinLoutW j
i
j

−
=⊆

)var()var()var(1
12 AinLoutW j

i
j

−
=⊆

nccK ∧∧= 1

icni ,1 ≤≤ uv =
 ν∈v

ε

,),,,(21
n

n Sssss ∈=

{ ππππ),...,,()()2()1(nsss
{ }}n,,2,1

F∈f
DDfI →*:)(

P∈p nDpI ⊆)(
)()(**)*(: DDDDDDDDIc →→→→→→→

)()(**)*(: DDDDDDDDIc →→→→→→→ *DD∈ψ
DdDhh ∈∈ *,, 21

DD∈ϕ uFf ∈
*Ds∈).(' sperms ∈

σ
σ

G
S

σ

G
C

σ

σ

G
E

21 ttG == δ

;21
σσ

GG
tt = 21 CCG ==

δ ;21
σσ

GG
CC =),,(1 nttpG δ=

Ff ∈

21 ttJ ==
ϑ ϑϑ 21 tt = 21 CCJ == ϑ .21 ϑϑ CC =

.)(),,(1
n

n FTtt ∈

10

Journal of Technical Science & Technologies; ISSN: 2298-0032; e-ISSN: 2346-8270; Volume 5, Issue 2, 2016
Jemal ANTIDZE, Besik DUNDUA, Mikheil RUKHAIA, Lali TIBUA

consist of positive clauses, the following facts hold:

1. Every program P has a least H model, which we
denote by lm(P,H).

2. If G is a goal then P|=G iff lm(P,H) is a model of G.

A ground substitution is an H-solution (or simply solu-
tion) of a constraint C if J|=C for all H-structures J. We de-
note, J|=C for all H-structures J by |=HC.

Theorem 1. If the constraint C is solved, J|= C holds for
all intended structures J.

Operational Semantics

In this section we describe the operational semantics of
CLP(SC), by following the approach for CLP schema given
in (Jaffar, et. al., 1998). A state is a pair {G||C}, where G is
the sequence of literals and C is a quantifier-free constraint.
If G is an empty sequence, we write 0 instead. The definition
of an atom in program , is the
set of rules in P such that the head of each rule has a form
 We assume that each time returns fresh
variants.

A state can be reduced as follows: Select a
literal Li. Then:

• If Li is a primitive constraint literal and
then it is reduced to .

• If Li is a primitive constraint literal and
then it is reduced to

• If Li is an atom , then it is reduced to
 for some
 .

• If Li is a atom and then it is reduced to

A derivation from a state S in a program P is a finite or
infinite sequence of states where
S0 is S and there is a reduction from each S1-1 to Si, using
rules in P. A derivation from a goal G in a program P is a
derivation from The length P of a (finite) derivation
of the form is n. A derivation is finished if
the last goal cannot be reduced; that is, if its last state is of
the form where C is in partially solved form. If C is
false, the derivation is said to be failed.

In (Beriashvili & Dundua, 2016; Dundua, 2014) we have
constructed a constraint solving algorithm which simplifies
constraints built over the language given in this paper. In par-
ticular, the solving algorithm transforms constraints in DNF
into constraints in DNF. We have proved, that the constraint
solver is sound, terminated and complete for well-moded
constraints. Which means, the solver completely solves any
well-moded constraint. Based on this result, we can easily
prove theorem stating, that well-modedness is preserved by
program derivation steps:

Theorem 2. Let P be a well-moded CLP(SC) program
and be a well-moded state. If is a re-
duction using clauses in P, then is also a well-moded
state.

An important result for well-moded programs is that any
finished derivation from a well-moded goal leads to a solved
constraint or to a failure:

Theorem 3. Let be a finished
derivation with respect to a well-moded CLP(SC) program,
starting from a well-moded goal G If then C`
is solved.

Applications

In this section we discuss an application of CLP(SC) in
membrane computing (Paun, 2000).

Membrane computing describes the evolution in time of
biological processes modeled with supercells. A supercell is
a structure consisting of a membrane which contains a finite
set of objects from a set U (the universe of investigation)
and a finite number of other supercells. Usually, the struc-
ture of objects of U is irrelevant; therefore, we can model
them as terms of the form f0() where f0 is an ordered func-
tion symbol. Thus, in our framework . For
computational purposes, no order is imposed on the objects
of a supercell, nor on the supercells contained in it. There-
fore, we can model the content of a supercell as follows:

• We use term with to denote a su-
percell content made of elements

• We use term fu(c(f01,...,f0m),sc1,...,scn) to denote a su-
percell with membrane fu, multiset content {f01,...,f0m} and
supercells sc1,...,scn immediately below the membrane fu.

For membrane computing we adopt the following syn-
tactic notions:

 supercell

 supercell objects

where ,},{\ uuu FccFf ∈∈ and

Ff ∈ Note the restriction
 which allows us to distinguish between the mul-
tiset of objects of a supercell, and the supercells immediate-
ly below the membrane of a supercell. Another restriction
not captured by the grammar of supercells, but implicit in
membrane computing, is that the membranes of supercells
are distinguishable; thus, no element of appears twice
in a supercell. The degree of a supercell is the total number
of supercells in that supercell, including itself. Note that the
degree of a supercell is the number of elements of there
set and fu appears sc}.

A P system is a rewrite-based computational model that
performs computations of biological processes modeled
with supercells. Suppose sc is a supercell of degree n with
membranes fu1,...,fun and outermost membrane fu1 (also
known as skin). In essence, a P system for this supercell is
a collection on n systems of evolution rules. We denote the
system of evolution rules for membrane fu1 by Ri

 . Ri con-
sists of evolution rules of the form where is a
string over U and is either of the form or where
is a string over

ϑ

E

),,(1 mttp)),,,((, 1 mp ttpdefnP

).,,(1 mrrp

CLL n,,1

falseLCsolve i ≠∧)(
)(,,,,, 111 inii LCsolveLLLL ∧+−

,)(falseLCsolve i =∧
.falseO

),,(1 mttp

,,, 11 −iLL CLLBrtrt nimm ,,,,, 111 +==
)()),,((1 ipm LdefnBrrp ∈←

,)(Ø=ip Ldefn
.0 false

 nSSS 10

.trueG
nSSS 10

C0

CG '' CGCG

'' CG

'0 CtrueG

,' falseC ≠

),,(0
1

0
mffc uFc∈

.,, 0
1

0
nff

)0(≥n

},{\ cFf uu ∈

}{\ cFu

{ cfFf uuu ≠∈

rhslhs →
rhslhs →

rhslhs →
δ'rhs δ'rhs

Journal of Technical Science & Technologies; ISSN: 2298-0032; e-ISSN: 2346-8270; Volume 5, Issue 2, 2016
Application of CLP (SC) in Membrane Computing

11

For such a rule r, we define the following auxiliary op-
erations: if is the of r;
 if is the muti-set of all
objects paired with here in the of r; if
. is the multiset of all objects paired with out in
the of r; and if is the
multiset of all objects paired with ini in the of r.

Rule R is intended to rewrite the supercell with mem-
brane fu1, inside a supercell of form

where . This pattern
detects the content c(H1) of the parent supercell to which
new objects must be added, the sequence elim(r) of ob-
jects of supercell i that must go away, and the supercells
scil,...,sciq comprised by supercell i that acquire objects
during this rule application.

We model the computation encoded in an evolution
rule of supercell i as follows.

If fu1 is not skin membrane, we distinguish 2 cases.

1. If i has no in , we produce

where is a sequence, and

for all }, where

2. If r has in , we produce

where , and all the terms scj,scj are like in
the previous case for all }.

The other case to consider is when fu1 is the skin mem-
brane. In this case, is not allowed to appear in of r
and our translation yields the rewrite rule

The rewrite relation induced by Ri on a supercell can
be encoded in CLP(SC) by a predicate rw_i(x,y) which
takes into account the priorities of the rules of Ri. If
. , where rules are enumerated in
decreasing order of priorities, we can define the predicate
rw_i(x,y) which denotes the fact that supercell x is rewrit-
ten to supercell y by applying the rule of Ri with highest
priority. The definition of rw for Ri consists of ni facts:

which are tried top-down. Next we can define rwN-
F_i(x,y) which holds if y is the normal form of rewriting x
with rules, in a manner that always selects the applicable
rule with highest priority.

Conclusion

We have integrated a constraint solving algorithm for equa-
tions over terms and contexts into the constraint logic pro-
gramming schema. The solving algorithm is sound termi-
nating and complete for well-moded constraints and solves
equations built over unranked ordered and unordered func-
tion symbols. We have studied the declarative and the op-
erational semantics of the derived programming language
CLP(SC) and found its applications in membrane computing.

Acknowledgments

This research has been supported by the Shota Rustaveli
National Science Foundation under the grants FR/325/4-
120/14 and YS15_2.1.2_70.

References

Beriashvili, M., & Dundua, B. (2016). A constraint solver for
equations over sequences and contexts. In B. T. Nguyen, T.
V. Do, H. A. L. Thi, & N. T. Nguyen (Eds.), Advanced com-
putational methods for knowledge engineering - proceedings
of the 4th international conference on computer science,
applied mathematics and applications, ICCSAMA 2016, 2-3
may, 2016, vienna, austria (Vol. 453, pp. 115–127). Springer.

Bojanczyk, M., & Walukiewicz, I. (2008). Forest algebras. In
J. Flum, E. Gr¨adel, & T. Wilke (Eds.), Logic and automata
(Vol. 2, pp. 107-132). Amsterdam University Press.

Boley, H. (1999). A tight, practical integration of relations and
functions (Vol. 1712). Springer.

Chasseur, E., & Deville, Y. (1997). Logic program schemas,
constraints, and semi-unification. In N. E. Fuchs (Ed.), Lopstr
(Vol. 1463, p. 69-89). Springer.

Dundua, B. (2014). Programming with sequence and context
variables:foundations and applications (Unpublished doctoral
dissertation). Universidade do Porto.

Dundua, B., Kutsia, T., & Marin, M. (2009). Strategies in prho-
log. In M. Ferna´ndez (Ed.), Proceedings ninth international
workshop on reduction strategies in rewriting and program-
ming, WRS 2009, brasilia, brazil, 28th june 2009. (Vol. 15,
pp. 32–43).

ISO/IEC. (2007). Information technology—Common Logic
(CL): A framework for a family of logic-based languages. In-
ternational Standard ISO/IEC 24707 (first ed.).

),,(:)lim(1 imi ffre

= imi ff

,,1 rhslhs →
),,(:)(1 jpj ffrnew

= }1{ plf jl ≤≤

rhslhs →

rhslhs →
rhslhs →

rhslhs →

rhslhs →

rhslhs →

),,(:)(1 rkk ffradd

=

{ }rkk ff

,,1

),,(:)(1 sll
i ffradd

= { }sll ff

,,1

{ } Ø≠∈=)(},,1{{:,,1 raddnjii jq

iRr∈

δ

δ

δ

HF F ,ν∈

},,{ 1 qiij ∈

}.,,{ 1 qiij ∈

}1{ iiii nirhslhsR ≤≤→=

12

Journal of Technical Science & Technologies; ISSN: 2298-0032; e-ISSN: 2346-8270; Volume 5, Issue 2, 2016
Jemal ANTIDZE, Besik DUNDUA, Mikheil RUKHAIA, Lali TIBUA

Jacquemard, F., & Rusinowitch, M. (2008). Closure of
hedgeautomata languages by hedge rewriting. In A. Vo-
ronkov (Ed.), Rta (Vol. 5117, p. 157-171). Springer.

Jaffar, J., Maher, M. J., Marriott, K., & Stuckey, P. J. (1998).
The semantics of constraint logic programs. J. Log. Pro-
gram., 37(1-3), 1-46.

Kutsia, T. (2002). Theorem proving with sequence variables
and flexible arity symbols. In M. Baaz & A. Voronkov (Eds.),
Lpar (Vol. 2514, p. 278-291). Springer.

Kutsia, T., & Buchberger, B. (2004). Predicate logic with
sequence variables and sequence function symbols. In A.
Asperti, G. Bancerek, & A. Trybulec (Eds.), Mkm (Vol. 3119,
p. 205-219). Springer.

Libkin, L. (2006). Logics for unranked trees: An overview.
Logical Methods in Computer Science, 2(3).

Menzel, C. (2011). Knowledge representation, the world
wide web, and the evolution of logic. Synthese, 182(2), 269-
295.

Paun, G. (2000). Computing with membranes (P systems):
A variant. Int. J. Found. Comput. Sci., 11(1), 167–181.

Wand, M. (1987). Complete type inference for simple ob-
jects. In Lics (p. 37-44). IEEE Computer Society.

Wolfram, S. (2003). The mathematica book (Fifth ed.). Wol-
fram-Media.

