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Abstract

Present artcile studies semantics of the constraint logic programming built over se-
quences and contexts, called CLP(SC). Sequences and contexts are constructed over 
function symbols and function variables which do not have fixed arity, together with 
term, sequence, and context variables. For some function symbols, the order of the ar-
guments matter (ordered symbols). For some others, this order is irrelevant (unordered 
symbols). Term variables stand for single terms, sequence variables for sequences, 
context variables for contexts, and function variables for function symbols. We have 
studied the semantics of CLP(SC)  and showed its application in membrane computing.

Keywords: Constraint Logic Programming, Sequence Context Matching, Membrane 
Computing.

Terms are considered as singleton sequences and se-
quences, as term sequences, can be concatenated to each 
other. In this way, sequences can “grow horizontally” and 
sequence variables help to explore it, filling gaps between 
siblings. However, such a concatenation has quite a limited 
power since it does not affect the depth of sequences, and 
does not permit them “to grow vertically”. To address this 
problem, Bojańczyk and Walukiewicz (2008) introduced so 
called forest algebras, where alongside sequences (thereby 
called forests), context also appears. These are sequences 
with a single hole in some leaf. Contexts can be composed 
by putting one of them in the hole of the other. Moreover, 
context can be applied to a sequence by putting it into the 
hole, resulting into a sequence. One can introduce context 
variables to stand for such contexts and function variables 
to stand for function symbols.

Sometimes the order of arguments in terms does not 
matter. For ranked terms, the corresponding natural equa-
tional theory is given by commutativity axioms for the cor-
responding function symbols. The counterparts of com-
mutative function symbols in the unranked case are called 
orderless or unordered symbols (Kutsia, 2002). The pro-

Introduction

Unranked terms are built over function symbols which do 
not have a fixed arity (unranked symbols). They are nearly 
ubiquitous in XML-related applications (Libkin, 2006).  They 
model variadic procedures used in programming languages 
(Menzel, 2011; Wand, 1987). Moreover, they appear in re-
writing (Jacquemard & Rusinowitch, 2008), knowledge rep-
resentation (Menzel, 2011; ISO/IEC, 2007), theorem prov-
ing (Kutsia, 2002; Kutsia & Buchberger, 2004), and program 
synthesis (Chasseur & Deville, 1997) just to name a few.

When working with unranked terms, it is a pragmatic ne-
cessity to consider variables which can be instantiated by 
a finite sequences of terms (called sequences). Such vari-
ables are referred to as unranked variables or sequence 
variables. We use the latter term in this paper. An example 
of an unranked term is                 , where     is an unranked 
function symbol,   and   are sequence variables, and    is 
a usual individual variable which can be instantiated by 
a single term. We can match this term, e.g., to the term                            
.                   in   two  different   ways,  with    the   substitutions 
{          )} and,                                    where 
is the empty sequence and          is a sequence consisting 
of two terms     and   . 
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gramming language of Mathematica (Wolfram, 2003) is 
an example of a successful application in programming of 
both syntactic and equational unranked pattern matching 
(including unordered matching) algorithms with sequence 
variables.

Our goal was to combine unranked contexts and se-
quences in a single framework, permitting both ordered and 
unordered function symbols, to study constraint solving in 
such a combined theory, and use it in the Constraint Logic 
Programming schema. Such a language is rich, possesses 
powerful means to traverse trees both horizontally and ver-
tically in a single or multiple steps, and allows the user to 
naturally express data structures (e.g., trees, sequences, 
multisets) and write code concisely. 

We restrict CLP programs over sequences and contexts 
to be well-moded. The well-modedness restriction is quite 
natural for conditional rule-based programs.     Log (Dun-
dua, Kutsia, & Marin, 2009)  is one of such experimental 
systems, which combines contexts and sequences and 
requires its rules to be well-moded. Hence, our result also 
shows how to express       Log semantics in terms of CLP.

The paper is organized as follows. In Section 2, the no-
tions and the terminology is introduced. In Section 3, we 
define the interpretation of various syntactic categories and 
the declarative semantics of the CLP(SC)  language. Sec-
tion 4 describes the operational semantics of CLP(SC). In 
Section 5 we show how to model P systems in CLP(SC). 
Finally, in Section 6 we conclude the paper.

Preliminaries

We consider the alphabet     consisting of the following pair-
wise disjoint sets of symbols:

•  :  term variables, denoted by x,y,z,...

•  : sequence variables, denoted by x,y,z,...

•  : function variables, denoted by X,Y,Z,...

•  : context variables, denoted by  X•,Y•,Z•,...

•  : unranked unordered function symbols, denoted 
by fu, gu, hu,...

•  : unranked ordered function symbols, denoted  by 
fo, go, ho,...   

•    the constant  •  (the hole),

•    P : ranked predicate symbols, denoted by  p,q,...

The sets of variables are countable, while the sets of 
function and predicate symbols are finite. In addition,      also 
contains

•  The propositional constants true and false, the binary 
equality  predicates      .

•  Logical connectives and quantifiers:  

•  Auxiliary symbols: parentheses and the comma.

Function symbols denoted by  f,g,h,... are elements of 
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the set  F=Fu     F0  A  variable is an element of the set.             
V=VT      VS      VF      VC  A functor, denoted by F, is a com-
mon name for a function symbol or a function variable.

We define inductively terms, sequences, and other syn-
tactic categories over as follows:

 

We denote the set of terms (resp. contexts) by T(F,v) 
(resp., by C(F,v)). The sets of ground (variable-free) terms 
and contexts are denoted, respectively, by  T(F) and C(F). 
For readability, we put parentheses around sequences writ-
ing, e.g.,                      instead of               .  The empty 
sequence is written as    . Besides the letter t, we use also r 
and s to denote terms. A context C may be applied to a term 
t (resp.  context C`), written  C[t] (resp. a context C[C`]), and 
the result is the term (resp.  context) obtained from C by 
replacing the hole • with t (resp. with C`).

Primitive constraints are either term equalities          or 
context equalities              and are written in infix notation, 
such as t1=t2, and C1=C2. Sometimes we write e1=e2, as a 
generic notation for both term equalities and context equal-
ities. We denote primitive constraints by c.

A mode for an n-ary predicate symbol p is a function mp 

:                        .       If                   (resp.              ) then the 
position i is called an input position (resp. output position) of  
p. We assume that the predicate    has only output positions.

An atom is a formula of the form                  where        is 
an n-ary predicate symbol. Atoms are denoted by A. A literal   
L is an atom or a primitive constraint. For a literal                  , 
where P can be also   , we denote by invar(L) and outvar(L)  
the sets of variables occurring in terms in the input and out-
put positions of p, respectively. We define invar(true)=Ø, 
outvar(true)=Ø, invar(false)=Ø, outvar(false)=Ø

Formulas are defined as usual. A constraint is an arbi-
trary first-order formula built over true, false, and primitive 
constraints. The set of free variables of a syntactic object   
O is denoted by var(O). We let           denote the formula               
.                , where                                       denotes                 . 
We write      (resp.    ) for the existential (resp. universal) 
closure of N. We refer to a language over the alphabet A 
as L(A).

A substitution is a mapping from term variables to terms, 
from sequence variables to sequences, from function vari-
ables to functors and from context variables to contexts, 
such that all but finitely many terms, sequences, and func-
tion variables are mapped to themselves and all but finitely 
many context variables are mapped to themselves applied 
to the hole. Substitutions extend to terms, sequences, con-
texts, literals, and conjunction of literals. 

A (constraint logic) program is a finite set of rules of the 
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form                              , usually written as                 where   A 
is an atom and L1,...,Ln are literals           .  A goal is a formula 
of the form                             usually written as L1,...,Ln.

A sequence of literals L1,...,Ln is called well-moded if the 
following conditions hold:

1. For all                ,  in var

2. If for some                      is              , then

    or 

     .

A conjunction of literals G is called well-moded if there 
exists a well-moded sequence of literals L1,...,Ln such that                       
                  modulo associativity and commutativity. A formula 
in disjunctive normal form (DNF) is well-moded if each of its 
disjuncts is well-moded. A state                                                      is 
well-moded, where K’s are conjunctions of primitive con-
straints, if the formula                                                           
is well-moded. A clause                      is well-moded if the 
following two conditions hold:

1. For all  ,

     .

2.      .

3. If for some             is the equality  , 
then          
or                .

A conjunction of primitive constraints                      is 
solved if for                      has the form             where 
and does not occur neither in u nor elsewhere in K. u is the 
corresponding language construct: term, sequence, func-
tor, or context. A constraint is solved, if it is either true or 
a non-empty quantifier-free disjunction of solved conjunc-
tions.

Declarative Semantics

Let S and T be sets. We denote by S* the set of finite, possi-
bly empty, sequences of the elements of S, where       is the 
empty sequence, by Sn the set of sequences of length   n of 
the elements of S, and by Ts the set of functions from S to  
T. Given a sequence   we denote by   
perm(s) the set of sequences   is a 
permutation of             . 

A structure G for a language L(A) is a tuple {D,I} made 
of  a non-empty carrier set of individuals and an interpre-
tation function I that maps each function symbol             to 
a function                        and each n-ary predicate symbol                    
.....      to an n-ary relation                  . Given such a structure, 
we also define the operation
   by     for all           ,    
.                            ,   and            .  Moreover, if               then            
                            for all            and       perm(s). A variable 
assignment for such a structure is a  function with domain   
that maps  term variables to elements of D; sequence vari-
able to elements of D*; function variables  to functions from 
D* to D; and context variables to functions from D to D.

The interpretations of out syntactic categories w.r.t. a 
structure G={D,I} and variable assignment     is shown be-

low. The interpretations           of sequences (including terms) 

and         of contexts are defined as follows: 

 

where o denotes function composition and Idd is the identity 
function on D.

Note that terms are interpreted as elements of D, se-
quences as elements of D*, and contexts as elements of 
DD. We may omit     and write simply         for the interpreta-
tion of a variable-free (i.e., ground) expression E.

Primitive constraints are interpreted w.r.t. a structure G 
and variable assignment          as follows:                              iff       
.            iff                       and                          
iff                                     holds. The notions G|=N for validity 
of an arbitrary formula N in G and |=N for validity of N in any 
structure are defined in the standard way. 

From now on we identify every context C with the func-
tion that maps every term t to the term C[t]. An intended 
structure is a structure G with carrier set TF and interpreta-
tions I defined for every              by                           It follows 
that                                                Thus, intended structures 
identify terms, sequences and contexts by themselves.  
Other remarkable properties of intended structures J are:

                     iff                   and                         if  

Given a CLP(H) program P, its Herbrand base Bp is, 
naturally, the set of all atoms p(t1,...,tn), where p is an n-ary 
user-defined predicate in P and                          Then an 
intended interpretation of  corresponds uniquely to a subset 
of Bp. An intended model P is an intended interpretation of   
P  that is its model. We will write shortly H-structure, H-inter-
pretation, H-model for intended structures, interpretations, 
and models, respectively.

As usual, we will write P|=G if G a goal which holds in 
every model of P. Since the programs considered by us 
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consist of positive clauses, the following facts hold: 

1. Every program P has a least H model, which we 
denote by lm(P,H).

2. If G is a goal then P|=G iff lm(P,H) is a model of G.

A ground substitution      is an H-solution (or simply solu-
tion) of a constraint C if J|=C for all H-structures J. We de-
note, J|=C for all H-structures J by |=HC.

Theorem 1. If the constraint C is solved, J|=   C holds for 
all intended structures J.

Operational Semantics

In this section we describe the operational semantics of 
CLP(SC), by following the approach for CLP schema  given 
in (Jaffar, et. al., 1998). A state is a pair {G||C}, where G is 
the sequence of literals and C is a quantifier-free constraint. 
If G is an empty sequence, we write 0 instead. The definition 
of an atom                     in program                                  , is the 
set of rules in P such that the head of each rule has  a form                      
               ....  We assume that  each time returns fresh 
variants.  

A state                 can be reduced as follows: Select a 
literal Li. Then:

• If Li is a primitive constraint literal and 
then it is reduced to              .

• If Li is a primitive constraint literal and 
then it is reduced to  

• If Li is an atom                      , then it is reduced to                     
                                                                for some  
                                      .

• If Li is a atom and                      then it is reduced to  

A derivation from a state S in a program P is a finite or 
infinite sequence of states                                                where   
S0 is S and there is a reduction from each S1-1  to Si, using 
rules in P. A derivation from a goal G in a program P is a 
derivation from                The length P of a (finite) derivation 
of the form                               is n. A derivation is finished if 
the last goal cannot be reduced; that is, if its last state is of 
the form              where C is in partially solved form. If C is 
false, the derivation is said to be failed.

In (Beriashvili & Dundua, 2016; Dundua, 2014) we have 
constructed a constraint solving algorithm which simplifies 
constraints built over the language given in this paper. In par-
ticular, the solving algorithm transforms constraints in DNF 
into constraints in DNF. We have proved, that the constraint 
solver is sound, terminated and complete for well-moded 
constraints. Which means, the solver completely solves any 
well-moded constraint. Based on this result, we can easily 
prove theorem stating, that well-modedness is preserved by 
program derivation steps:

Theorem 2. Let P be a well-moded CLP(SC) program 
and           be a well-moded state. If                          is a re-
duction using clauses in P, then             is also a well-moded 
state.

An important result for well-moded programs is that any 
finished derivation from a well-moded goal leads to a solved 
constraint or to a failure:

Theorem 3. Let                                  be a finished 
derivation with respect to a well-moded CLP(SC) program, 
starting from a well-moded goal G If                         then C` 
is solved.

Applications

In this section we discuss an application of CLP(SC) in 
membrane computing (Paun, 2000).

Membrane computing describes the evolution in time of 
biological processes modeled with supercells. A supercell is 
a structure consisting of a membrane which contains a finite 
set of objects from a set U (the universe of investigation) 
and a finite number of other supercells. Usually, the struc-
ture of objects of U is irrelevant; therefore, we can model 
them as terms of the form f0() where f0  is an ordered func-
tion symbol. Thus, in our framework                          . For 
computational purposes, no order is imposed on the objects 
of a supercell, nor on the supercells contained in it. There-
fore, we can model the content of a supercell as follows:

• We use term                     with             to denote a su-
percell content made of elements  

• We use term fu(c(f01,...,f0m),sc1,...,scn) to denote a su-
percell with membrane fu, multiset content {f01,...,f0m} and 
supercells sc1,...,scn  immediately below the membrane fu.

For membrane computing we adopt the following syn-
tactic notions:

                                                supercell

                       supercell objects

where ,},{\ uuu FccFf ∈∈  and 


Ff ∈  Note the restriction                   
      which allows us to distinguish between the mul-
tiset of objects of a supercell, and the supercells immediate-
ly below the membrane of a supercell. Another restriction 
not captured by the grammar of supercells, but implicit in 
membrane computing, is that the membranes of supercells 
are distinguishable; thus, no element of             appears twice 
in a supercell. The degree of a supercell is the total number 
of supercells in that supercell, including itself. Note that the 
degree of a supercell   is the number of elements of there 
set                         and fu appears sc}.

A P system is a rewrite-based computational model that 
performs computations of biological processes modeled 
with supercells. Suppose sc is a supercell of degree n with 
membranes fu1,...,fun and outermost membrane fu1 (also 
known as skin). In essence, a P system for this supercell is 
a collection on n systems of evolution rules. We denote the 
system of evolution rules for membrane fu1  by Ri

 . Ri  con-
sists of evolution rules of the form                      where       is a 
string over U and       is either of the form        or         where   
is a string over
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For such a rule r, we define the following auxiliary op-
erations:                                   if                 is the          of  r;                                    
                 if                        is the muti-set of all 
objects paired with here in the       of r;                            if    
.                 is the multiset of all objects paired with out  in 
the       of r;  and                                if                   is the 
multiset of all objects paired with ini  in the       of r.

Rule R is intended to rewrite the supercell with mem-
brane fu1, inside a supercell of form 

where                                                        . This pattern 
detects the content c(H1) of the parent supercell to which 
new objects must be added, the sequence elim(r) of ob-
jects of supercell i that must go away, and the supercells   
scil,...,sciq comprised by supercell i that acquire objects 
during this rule application.

We model the computation encoded in an evolution 
rule          of supercell i as follows.

If fu1 is not skin membrane, we distinguish 2 cases.  

1. If i has no     in       , we produce

where                      is a sequence,                                and

for all               },  where  

2. If r has     in       , we produce

 

where                           , and all the terms scj,scj are like in 
the previous case for all              }. 

The other case to consider is when fu1 is the skin mem-
brane. In this case,     is not allowed to appear in       of  r 
and our translation yields the rewrite rule

 

The rewrite relation induced by Ri on a supercell can 
be encoded in CLP(SC) by a predicate rw_i(x,y) which 
takes into account the priorities of the rules of  Ri. If                                    
.                                , where rules are enumerated in 
decreasing order of priorities, we can define the predicate   
rw_i(x,y) which denotes the fact that supercell x  is rewrit-
ten to supercell y by applying the rule of Ri  with highest 
priority. The definition of rw for Ri consists of ni facts:

 

which are tried top-down. Next we can define rwN-
F_i(x,y) which holds if y is the normal form of rewriting x 
with rules, in a manner that always selects the applicable 
rule with highest priority.

 

Conclusion

We have integrated a constraint solving algorithm for equa-
tions over terms and contexts into the constraint logic pro-
gramming schema. The solving algorithm is sound termi-
nating and complete for well-moded constraints and solves 
equations built over unranked ordered and unordered func-
tion symbols. We have studied the declarative and the op-
erational semantics of the derived programming language 
CLP(SC) and found its applications in membrane computing.
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