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In recent years usefulness of sequence and context vari-
ables has been shown in various areas of mathematics and 
computer science. Sequence variables are placeholders for 
arbitrarily long finite sequences of expressions and have 
applications in programming (Wolfram, 2003), XML query-
ing and transformation (Coelho, Dundua, Florido, & Kutsia, 
2010), knowledge engineering and artificial intelligence (Vol-
pano, 1994), and automated reasoning (Ginsberg, 1991). 
Context variables are placeholders for contexts, which are 
functional expressions whose applicative behavior is to re-
place a special constant (so called hole) with the expression 
given as argument. They have applications in compositional 
semantics of natural language (Koller, 1998). Combination 
of these variables together with individual and function vari-
ables in a single framework allows flexible term traversal in 
arbitrary width (with individual and sequence variables) and 
in arbitrary depth (with function and context variables). 

PρLog is a system (Dundua, 2014; Dundua, Kutsia, & 
Marin, 2009) that supports programming with individual, se-
quence, function, and context variables. It extends Prolog 
with rule based programming capabilities to manipulate the 
sequences of trees, also known as sequences. PρLog has 
a computational model based on ρLog calculus (Marin & 
Kutsia, 2006) and a logic programming semantics where 
program clauses define strategies that act on sequences. 
Such an extension allows to bring the whole Prolog power 
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Abstract

In this article we show how access control policies can be expressed in PρLog, 
which is a system for programming with conditional transformation rules, con-
trolled by strategies. PρLog combines the power of logic programming with 
rewriting, which makes it convenient to reason about the policies.
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into PρLog and adds rule based strategic programming ca-
pabilities to it. Strategies work on sequences and provide 
a mechanism to control complex rule based computations 
in a highly declarative way. Such an extension of Prolog is 
expressive enough to support concise implementations for 
specifying and prototyping deductive systems, solvers for 
various equational theories, etc. PρLog system has been 
used in XML transformation and Web reasoning (Coelho, 
et al., 2010), in evaluation strategies (Dundua, et al., 2009), 
and in extraction of frequent patterns from data mining 
workflows (Nguyen, 2015). In this paper, we show how ac-
cess control policies can be expressed in PρLog.

Access control is a security technique that specifies 
which users can access particular resources in a comput-
ing environment. Over the years, numerous access control 
models have been developed to address various aspects of 
computer security. In this work, we focus on the role-based 
access control (RBAC) (Ferraiolo, Sandhu, Gavrila, Kuhn, 
& Chandramouli, 2001), which has been proposed in order 
to overcome limitations of traditional models: discretion-
ary access control (DAC) (Sandhu & Samarati, 1994) and 
mandatory access control (MAC) (Sandhu, 1993). Despite 
successful practical applications of these traditional models, 
they have certain disadvantages, which was the reason why 
new approaches emerged.

Introduction
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The main problem with DAC is that it lacks control over 
the flow of information (information is copied from one object 
to another). MAC solves this problem by classifying subjects 
and objects with respect to their security levels, granting re-
quest by a subject to an object if a relationship between the 
subjects security level and the object is satisfied. However, 
once security levels are assigned, they cannot be changed. 
RBAC is designed to be a more general model than MAC or 
DAC where users are assigned a certain set of roles. The 
roles, in turn, have permissions assigned to them. A request 
made by a user is authorized, if the roles assigned to the 
user contain permissions that allow the request. RBAC has 
found its applications in many commercial and governmen-
tal sectors (Gilbert, 1995). 

In this paper we demonstrate application of the PρLog 
system in access control. In particular, using an example 
we illustrate how role based access control problem can be 
encoded in the PρLog system as well as how the PρLog can 
be used for evaluating access requests.

The PρLog Language
PρLog’s strategic conditional transformation rules are sup-
posed to transform term sequences when the condition is 
satisfied. Strategies can be combined by means of a lan-
guage of strategy operators to express many tedious small 
step transformations in a compact way and provide mecha-
nism to control complex rule-based computation in a highly 
declarative way. 

A strategic conditional transformation rule, which swaps 
adjacent elements in a sequence if they satisfy a given con-
dition can be implemented in PρLog as follows: 

 swap:: (s_X,i_x,i_y,s_Y) ==>

  (s_X,i_y,i_x,s_Y) :- i_x > i_y.

Here swap is the strategy name. It is followed by the 
separator :: which separates the strategy name from the 
transformation. Then comes the transformation itself in the 
form lhs ==> rhs. It says that if the sequence in lhs contains 
neighboring elements (i_x and i_y) such that i_x > i_y then 
swap them in rhs. Here :-, as in Prolog, stands for the in-
verse implication. Individual variables (i_x and i_y) are used 
to select terms in a sequence, while sequence variables 
s_X and s_Y match subsequences before i_x and after i_y 
respectively.

Now one can ask a question, e.g., to swap neighboring 
elements in a sequence of numbers (1,3,2,1):

 ?- swap::(1,3,2,1) ==>  s_Result. 

The sequence (s_X, i_x, i_y, s_Y) matches (1,3,2,1) in 
three different ways, as indicated by the following mappings: 

 1. s_X → () (indicating that s_X matches the empty 
sequence), i_x → 1, i_y → 3, s_Y → (2,1) (meaning that 
s_Y matches the sequence 2,1) .

 2. s_X → 1, i_x → 3, i_y → 2 and s_Y → 1. 

 3. s_X → (1,3), i_x → 2, i_y → 1 and s_Y → (). 

In the first case, the condition i_x > i_y is not satisfied 
and query evaluation fails, while the second and third cases 

satisfy the condition i_x > i_y and, via backtracking, PρLog 
returns two answers s_Result → (1,2,3,1) and s_Result → 
(1,3,1,2). 

swap was an instance of a user-defined strategy. PρLog 
provides built-in strategies as well. Both user-defined and 
built-in strategies can be used in programs and queries, 
they can participate in constructing more complex strate-
gies, etc. The difference is that built-in strategies are fixed 
by the system and the user cannot redefine them. We give 
a brief overview some of the built-in strategies which  will be 
used later in expressing access control policies.

Identity. The goal of this strategy is to transform a se-
quence to its identical one: 

 id :: sequence1 ==> sequence2. 

It succeeds iff sequence2 can match sequence1.

Composition. Composing strategies, so that the output 
sequence of one becomes the input for the other: 

compose(strategy1,...,strategyn)::

 sequence1 ==> sequence2, 

where n ≥ 2. First applies strategy1 to sequence1. To its 
result, strategy2 is applied and so on. sequence2 is the final 
result. compose fails if one of its argument strategies fails 
in the process.

Returning first answer of the first applicable strategy. 
Denoted by first_one: 

first_one(strategy1,...,strategyn)::

 sequence1 ==> sequence2, 

where n ≥ 1. Tries to apply strategy1 to sequence1. If 
this fails, it tries the next strategy and so on. When a strat-
egy is found that succeeds, first_one returns first answer 
computed by it in sequence2. If no strategy succeeds, first_
one fails.

Normal form. Applies repeatedly a strategy to a given 
sequence, before normal form is reached:

 nf(strategy)::sequence1 ==> sequence2. 

It applies strategy repeatedly to sequence1 until the 
transformation is not possible, and returns the last se-
quence. The result is returned in sequence2.

Mapping a strategy to a sequence. It is a common op-
eration in declarative programming. The corresponding 
PρLog strategy is 

 map(strategy)::sequence1 ==> sequence2. 

It applies strategy to each term of sequence1. For such 
an input term, strategy may, in general, return a sequence 
(not necessarily a single term). A sequence constructed 
of these results (in the same order) is then returned in se-
quence2. map fails when the application of strategy to a 
term from sequence1 fails. When sequence1 is empty, se-
quence2 is empty as well. 

The syntax of PρLog is largely similar to Prolog. The 
PρLog variables are Prolog constants. Besides already 
mentioned individual and sequence variables, there are 
also function and context variables in PρLog that help to 
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perform a certain type of second-order matching. In gener-
al, variable names start with the first letter of their kind, fol-
lowed by the underscore. After the underscore, there comes 
the actual name. We have already seen the examples of 
two kinds of variables: individual variables i_x and i_y, and 
sequence variables s_X,s_Y,s_Result. The syntax of atom-
ic strategies has also been explained at the beginning of 
this section. For a reference, a more detailed summary of 
PρLog syntax is given in Fig. 1.

Role Based Access Control
The simplest model of RBAC consists of sets of users (U), 
roles (R), and permissions (P). An user u     U in this model 
is a human being assigned to a set of roles {r1,...,rn}   R. 
Permissions is an approval of a certain mode of access to 
an object. The following example illustrates modeling of a 
simple RBAC scenario in PρLog.

Example 3.1 Suppose that the user u1 is assigned to the 
roles r1 and r2, and the user u2 is assigned to the role r2. 
Moreover, suppose that the role r1 is assigned the reading 
permission on the object o1 and the writing permission on 
the object o2, and the role r2 is assigned the writing permis-
sion on o1. The user-role and role-permission assignments 
in PρLog are expressed as follows: 

Figure 1. A summary of PρLog syntax. The symbols eps and hole 
are the notation for the empty sequence and the hole, respectively.

user_role :: u1 ==> (r1,r2).

user_role :: u2 ==> r2. 

role_permissions :: r1 ==> 

 (read(o1),write(o2)). 

role_permissions :: r2 ==> write(o1).

If a role is assigned to have a write permission to an 
object, it is obvious that the role has read permission to that 
object as well. We encode, this property in PρLog as fol-
lows:

implies :: write(i_Object) ==>

 (read(i_Object),write(i_Object)) :−

 !. 

implies :: i_Privilege ==> i_Privilege. 

Each role can be assigned several permissions and 
each user can have several roles, which can be encoded in 
PρLog as follows:

access :: (i_User,i_Obj) ==> grant :−

 all_permissions_for_a_user ::

 i_User ==> (s__,i_Obj,s__),

 !. 

access :: (i_User,i_Obj) ==> deny.

all_permissions_for_a_role :=

 compose(role_permissions,

 map(implies)). 

all_permissions_for_a_user :=

 compose(

 all_answers_flat(compose(user_role,

 map(all_permissions_for_a_role))),

 merge_all_doubles).

merge_doubles :: (s_X,i_X,s_Y,i_X,s_Z)   

 ==> (s_X,i_X,s_Y,s_Z). 

merge_all_doubles :=

 first_one(nf(merge_doubles)).

all_answers_flat(i_Strategy) := 

 compose(all_answers(i_Strategy),

 map(flatten_ans)).

flatten_ans :: ans(s_X) ==> s_X.

Now we can start asking questions to this program. For 
instance, to find out whether u1 has the read permission 
on o1:

?(access::(u1,read(o1)) ==> i_X, Subst).

 Subst = [i_X--->grant]

The answer substitution says that u1 should be granted 

∈
⊆



44

Journal of Technical Science & Technologies; ISSN: 2298-0032; e-ISSN: 2346-8270; Volume 5, Issue 2, 2016
Besik DUNDUA, Khimuri RUKHAIA, Mikheil RUKHAIA, Lali TIBUA

the read permission on o1. Answers to the queries below 
are interpreted similarly. 

?(access::(u1,write(o1))==> i_X, Subst).
 Subst = [i_X--->grant] 
?(access::(u1,read(o2)) ==> i_X, Subst).
 Subst = [i_X--->grant] 

?(access::(u1,write(o2))==> i_X, Subst).

 Subst = [i_X--->grant] 

?(access::(u2,read(o1)) ==> i_X, Subst).

 Subst = [i_X--->grant]

?(access::(u2,write(o1))==> i_X, Subst).

 Subst = [i_X--->grant]

?(access::(u2,read(o2)) ==> i_X, Subst).

 Subst = [i_X--->deny] 

?(access::(u2,write(o2))==> i_X, Subst).

 Subst = [i_X--->deny]

One can easily check that the retuned answers are all 
expected. In general, access control policies should be con-
sistent, i.e. the same user should not be at the same time 
granted and denied the same privilege to the same object. 
By analyzing the program, we can easily observe that first, 
there cannot be infinite computations, since there are no 
recursions and built-in strategies are terminating (the lat-
ter can be proved once and for all). Moreover, two claus-
es defining the access strategy are mutually exclusive: if 
a privilege is granted, then it cannot be denied and vice 
versa. These properties imply that on every request we get 
an answer (which means our access control policy in total) 
and we cannot get at the same time grant and deny (which 
means the policy is consistent). 

Conclusion
We briefly described PρLog and gave an example that il-
lustrates how access control policies can be implemented 
in this language. The style of programming by conditional 
transformation rules, controlled by strategies, makes it con-
venient both to express the policies and to reason about 
them.
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