
Journal of Technical Science & Technologies; ISSN: 2298-0032; e-ISSN: 2346-8270; Volume 5, Issue 2, 2016
PρLog for Access Control

41

In recent years usefulness of sequence and context vari-
ables has been shown in various areas of mathematics and
computer science. Sequence variables are placeholders for
arbitrarily long finite sequences of expressions and have
applications in programming (Wolfram, 2003), XML query-
ing and transformation (Coelho, Dundua, Florido, & Kutsia,
2010), knowledge engineering and artificial intelligence (Vol-
pano, 1994), and automated reasoning (Ginsberg, 1991).
Context variables are placeholders for contexts, which are
functional expressions whose applicative behavior is to re-
place a special constant (so called hole) with the expression
given as argument. They have applications in compositional
semantics of natural language (Koller, 1998). Combination
of these variables together with individual and function vari-
ables in a single framework allows flexible term traversal in
arbitrary width (with individual and sequence variables) and
in arbitrary depth (with function and context variables).

PρLog is a system (Dundua, 2014; Dundua, Kutsia, &
Marin, 2009) that supports programming with individual, se-
quence, function, and context variables. It extends Prolog
with rule based programming capabilities to manipulate the
sequences of trees, also known as sequences. PρLog has
a computational model based on ρLog calculus (Marin &
Kutsia, 2006) and a logic programming semantics where
program clauses define strategies that act on sequences.
Such an extension allows to bring the whole Prolog power

* Ph.D., Institute of Applied Mathematics, Tbilisi State University, & Faculty of Computer Technologies and Engineering,
International Black Sea University, Tbilisi, Georgia.
 E-mail: bdundua@gmail.com
** Assoc. Prof. Dr., Faculty of Exact and Natural Sciences, Tbilisi State University,& Faculty of Mathematics and Computer Sciences,
Sokhumi State University, Tbilisi, Georgia.
 E-mail: khimuri.rukhaia@gmail.com
*** Assoc. Prof. Dr., Institute of Applied Mathematics, Tbilisi State University, & Faculty of Computer Technologies and Engineering,
International Black Sea University, Tbilisi, Georgia.
 E-mail: mrukhaia@ibsu.edu.ge
**** Ph. D., Faculty of Exact and Natural Sciences, Tbilisi State University, & School of IT, Engineering and Mathematics,
University of Georgia, Tbilisi, Georgia.
 E-mail: ltibua@gmail.com

PρLog for Access Control

Besik DUNDUA*
Khimuri RUKHAIA**
Mikheil RUKHAIA***

Lali TIBUA****

Abstract

In this article we show how access control policies can be expressed in PρLog,
which is a system for programming with conditional transformation rules, con-
trolled by strategies. PρLog combines the power of logic programming with
rewriting, which makes it convenient to reason about the policies.

Keywords: Access control, programming with strategies, PρLog

into PρLog and adds rule based strategic programming ca-
pabilities to it. Strategies work on sequences and provide
a mechanism to control complex rule based computations
in a highly declarative way. Such an extension of Prolog is
expressive enough to support concise implementations for
specifying and prototyping deductive systems, solvers for
various equational theories, etc. PρLog system has been
used in XML transformation and Web reasoning (Coelho,
et al., 2010), in evaluation strategies (Dundua, et al., 2009),
and in extraction of frequent patterns from data mining
workflows (Nguyen, 2015). In this paper, we show how ac-
cess control policies can be expressed in PρLog.

Access control is a security technique that specifies
which users can access particular resources in a comput-
ing environment. Over the years, numerous access control
models have been developed to address various aspects of
computer security. In this work, we focus on the role-based
access control (RBAC) (Ferraiolo, Sandhu, Gavrila, Kuhn,
& Chandramouli, 2001), which has been proposed in order
to overcome limitations of traditional models: discretion-
ary access control (DAC) (Sandhu & Samarati, 1994) and
mandatory access control (MAC) (Sandhu, 1993). Despite
successful practical applications of these traditional models,
they have certain disadvantages, which was the reason why
new approaches emerged.

Introduction

42

Journal of Technical Science & Technologies; ISSN: 2298-0032; e-ISSN: 2346-8270; Volume 5, Issue 2, 2016
Besik DUNDUA, Khimuri RUKHAIA, Mikheil RUKHAIA, Lali TIBUA

The main problem with DAC is that it lacks control over
the flow of information (information is copied from one object
to another). MAC solves this problem by classifying subjects
and objects with respect to their security levels, granting re-
quest by a subject to an object if a relationship between the
subjects security level and the object is satisfied. However,
once security levels are assigned, they cannot be changed.
RBAC is designed to be a more general model than MAC or
DAC where users are assigned a certain set of roles. The
roles, in turn, have permissions assigned to them. A request
made by a user is authorized, if the roles assigned to the
user contain permissions that allow the request. RBAC has
found its applications in many commercial and governmen-
tal sectors (Gilbert, 1995).

In this paper we demonstrate application of the PρLog
system in access control. In particular, using an example
we illustrate how role based access control problem can be
encoded in the PρLog system as well as how the PρLog can
be used for evaluating access requests.

The PρLog Language
PρLog’s strategic conditional transformation rules are sup-
posed to transform term sequences when the condition is
satisfied. Strategies can be combined by means of a lan-
guage of strategy operators to express many tedious small
step transformations in a compact way and provide mecha-
nism to control complex rule-based computation in a highly
declarative way.

A strategic conditional transformation rule, which swaps
adjacent elements in a sequence if they satisfy a given con-
dition can be implemented in PρLog as follows:

 swap:: (s_X,i_x,i_y,s_Y) ==>

 (s_X,i_y,i_x,s_Y) :- i_x > i_y.

Here swap is the strategy name. It is followed by the
separator :: which separates the strategy name from the
transformation. Then comes the transformation itself in the
form lhs ==> rhs. It says that if the sequence in lhs contains
neighboring elements (i_x and i_y) such that i_x > i_y then
swap them in rhs. Here :-, as in Prolog, stands for the in-
verse implication. Individual variables (i_x and i_y) are used
to select terms in a sequence, while sequence variables
s_X and s_Y match subsequences before i_x and after i_y
respectively.

Now one can ask a question, e.g., to swap neighboring
elements in a sequence of numbers (1,3,2,1):

 ?- swap::(1,3,2,1) ==> s_Result.

The sequence (s_X, i_x, i_y, s_Y) matches (1,3,2,1) in
three different ways, as indicated by the following mappings:

 1. s_X → () (indicating that s_X matches the empty
sequence), i_x → 1, i_y → 3, s_Y → (2,1) (meaning that
s_Y matches the sequence 2,1) .

 2. s_X → 1, i_x → 3, i_y → 2 and s_Y → 1.

 3. s_X → (1,3), i_x → 2, i_y → 1 and s_Y → ().

In the first case, the condition i_x > i_y is not satisfied
and query evaluation fails, while the second and third cases

satisfy the condition i_x > i_y and, via backtracking, PρLog
returns two answers s_Result → (1,2,3,1) and s_Result →
(1,3,1,2).

swap was an instance of a user-defined strategy. PρLog
provides built-in strategies as well. Both user-defined and
built-in strategies can be used in programs and queries,
they can participate in constructing more complex strate-
gies, etc. The difference is that built-in strategies are fixed
by the system and the user cannot redefine them. We give
a brief overview some of the built-in strategies which will be
used later in expressing access control policies.

Identity. The goal of this strategy is to transform a se-
quence to its identical one:

 id :: sequence1 ==> sequence2.

It succeeds iff sequence2 can match sequence1.

Composition. Composing strategies, so that the output
sequence of one becomes the input for the other:

compose(strategy1,...,strategyn)::

 sequence1 ==> sequence2,

where n ≥ 2. First applies strategy1 to sequence1. To its
result, strategy2 is applied and so on. sequence2 is the final
result. compose fails if one of its argument strategies fails
in the process.

Returning first answer of the first applicable strategy.
Denoted by first_one:

first_one(strategy1,...,strategyn)::

 sequence1 ==> sequence2,

where n ≥ 1. Tries to apply strategy1 to sequence1. If
this fails, it tries the next strategy and so on. When a strat-
egy is found that succeeds, first_one returns first answer
computed by it in sequence2. If no strategy succeeds, first_
one fails.

Normal form. Applies repeatedly a strategy to a given
sequence, before normal form is reached:

 nf(strategy)::sequence1 ==> sequence2.

It applies strategy repeatedly to sequence1 until the
transformation is not possible, and returns the last se-
quence. The result is returned in sequence2.

Mapping a strategy to a sequence. It is a common op-
eration in declarative programming. The corresponding
PρLog strategy is

 map(strategy)::sequence1 ==> sequence2.

It applies strategy to each term of sequence1. For such
an input term, strategy may, in general, return a sequence
(not necessarily a single term). A sequence constructed
of these results (in the same order) is then returned in se-
quence2. map fails when the application of strategy to a
term from sequence1 fails. When sequence1 is empty, se-
quence2 is empty as well.

The syntax of PρLog is largely similar to Prolog. The
PρLog variables are Prolog constants. Besides already
mentioned individual and sequence variables, there are
also function and context variables in PρLog that help to

Journal of Technical Science & Technologies; ISSN: 2298-0032; e-ISSN: 2346-8270; Volume 5, Issue 2, 2016
PρLog for Access Control

43

perform a certain type of second-order matching. In gener-
al, variable names start with the first letter of their kind, fol-
lowed by the underscore. After the underscore, there comes
the actual name. We have already seen the examples of
two kinds of variables: individual variables i_x and i_y, and
sequence variables s_X,s_Y,s_Result. The syntax of atom-
ic strategies has also been explained at the beginning of
this section. For a reference, a more detailed summary of
PρLog syntax is given in Fig. 1.

Role Based Access Control
The simplest model of RBAC consists of sets of users (U),
roles (R), and permissions (P). An user u U in this model
is a human being assigned to a set of roles {r1,...,rn} R.
Permissions is an approval of a certain mode of access to
an object. The following example illustrates modeling of a
simple RBAC scenario in PρLog.

Example 3.1 Suppose that the user u1 is assigned to the
roles r1 and r2, and the user u2 is assigned to the role r2.
Moreover, suppose that the role r1 is assigned the reading
permission on the object o1 and the writing permission on
the object o2, and the role r2 is assigned the writing permis-
sion on o1. The user-role and role-permission assignments
in PρLog are expressed as follows:

Figure 1. A summary of PρLog syntax. The symbols eps and hole
are the notation for the empty sequence and the hole, respectively.

user_role :: u1 ==> (r1,r2).

user_role :: u2 ==> r2.

role_permissions :: r1 ==>

 (read(o1),write(o2)).

role_permissions :: r2 ==> write(o1).

If a role is assigned to have a write permission to an
object, it is obvious that the role has read permission to that
object as well. We encode, this property in PρLog as fol-
lows:

implies :: write(i_Object) ==>

 (read(i_Object),write(i_Object)) :−

 !.

implies :: i_Privilege ==> i_Privilege.

Each role can be assigned several permissions and
each user can have several roles, which can be encoded in
PρLog as follows:

access :: (i_User,i_Obj) ==> grant :−

 all_permissions_for_a_user ::

 i_User ==> (s__,i_Obj,s__),

 !.

access :: (i_User,i_Obj) ==> deny.

all_permissions_for_a_role :=

 compose(role_permissions,

 map(implies)).

all_permissions_for_a_user :=

 compose(

 all_answers_flat(compose(user_role,

 map(all_permissions_for_a_role))),

 merge_all_doubles).

merge_doubles :: (s_X,i_X,s_Y,i_X,s_Z)

 ==> (s_X,i_X,s_Y,s_Z).

merge_all_doubles :=

 first_one(nf(merge_doubles)).

all_answers_flat(i_Strategy) :=

 compose(all_answers(i_Strategy),

 map(flatten_ans)).

flatten_ans :: ans(s_X) ==> s_X.

Now we can start asking questions to this program. For
instance, to find out whether u1 has the read permission
on o1:

?(access::(u1,read(o1)) ==> i_X, Subst).

 Subst = [i_X--->grant]

The answer substitution says that u1 should be granted

∈
⊆

44

Journal of Technical Science & Technologies; ISSN: 2298-0032; e-ISSN: 2346-8270; Volume 5, Issue 2, 2016
Besik DUNDUA, Khimuri RUKHAIA, Mikheil RUKHAIA, Lali TIBUA

the read permission on o1. Answers to the queries below
are interpreted similarly.

?(access::(u1,write(o1))==> i_X, Subst).
 Subst = [i_X--->grant]
?(access::(u1,read(o2)) ==> i_X, Subst).
 Subst = [i_X--->grant]

?(access::(u1,write(o2))==> i_X, Subst).

 Subst = [i_X--->grant]

?(access::(u2,read(o1)) ==> i_X, Subst).

 Subst = [i_X--->grant]

?(access::(u2,write(o1))==> i_X, Subst).

 Subst = [i_X--->grant]

?(access::(u2,read(o2)) ==> i_X, Subst).

 Subst = [i_X--->deny]

?(access::(u2,write(o2))==> i_X, Subst).

 Subst = [i_X--->deny]

One can easily check that the retuned answers are all
expected. In general, access control policies should be con-
sistent, i.e. the same user should not be at the same time
granted and denied the same privilege to the same object.
By analyzing the program, we can easily observe that first,
there cannot be infinite computations, since there are no
recursions and built-in strategies are terminating (the lat-
ter can be proved once and for all). Moreover, two claus-
es defining the access strategy are mutually exclusive: if
a privilege is granted, then it cannot be denied and vice
versa. These properties imply that on every request we get
an answer (which means our access control policy in total)
and we cannot get at the same time grant and deny (which
means the policy is consistent).

Conclusion
We briefly described PρLog and gave an example that il-
lustrates how access control policies can be implemented
in this language. The style of programming by conditional
transformation rules, controlled by strategies, makes it con-
venient both to express the policies and to reason about
them.

Acknowledgments
This research has been supported by the Shota Rustaveli
National Science Foundation under the grants FR/508/4-
120/14 and YS15_2.1.2_70.

References
Coelho, J., Dundua, B., Florido, M., & Kutsia, T. (2010). A
rule-based approach to XML processing and web reason-
ing. In P. Hitzler & T. Lukasiewicz (Eds.), RR (Vol. 6333, p.
164-172). Springer.

Dundua, B. (2014). Programming with sequence and con-
text variables:foundations and applications (Unpublished
doctoral dissertation). Universidade do Porto.

Dundua, B., Kutsia, T., & Marin, M. (2009). Strategies in
PρLog. In M. Fernandez (Ed.), Proceedings ninth interna-
tional workshop on reduction strategies in rewriting and
programming, WRS 2009, Brasilia, Brazil, 28th june 2009.
EPTCS, vol. 15, pp. 32–43.

Ferraiolo, D. F., Sandhu, R. S., Gavrila, S. I., Kuhn, D. R., &
Chandramouli, R. (2001). Proposed NIST standard for role-
based access control. ACM Trans. Inf. Syst. Secur., 4(3),
224–274.

Gilbert, M. D. M. (1995). An examination of federal and com-
mercial access control policy needs. In National computer
security conference, 1993 (16th) proceedings: Information
systems security: User choices (p. 107).

Ginsberg, M. L. (1991). The MVL theorem proving system.
SIGART Bulletin, 2(3), 57-60.

Koller, A. (1998). Evaluating context unification for semantic
underspecification. In Proceedings of the third esslli student
session (pp. 188–199).

Marin, M., & Kutsia, T. (2006). Foundations of the rule-
based system ρLog. Journal of Applied Non-Classical Log-
ics, 16(1-2), 151-168.

Nguyen, P. (2015). Meta-mining: a meta-learning frame-
work to support the recommendation, planning and opti-
mization of data mining workflows (Unpublished doctoral
dissertation). Department of Computer Science, University
of Geneva.

Sandhu, R. S. (1993). Lattice-based access control models.
IEEE Computer, 26(11), 9–19.

Sandhu, R. S., & Samarati, P. (1994). Access control: prin-
ciple and practice. IEEE communications magazine, 32(9),
40–48.

Volpano, D. M. (1994). Haskell-style overloading is np-hard.
In H. E. Bal (Ed.), Iccl (p. 88-94). IEEE Computer Society.

Wolfram, S. (2003). The Mathematica Book (5. ed.). Wol-
fram-Media.

