Catastrophe Predator-Prey Analysis with Root Locus

Ketevan KOTRIKADZE*

Abstract

This article discusses the study of the Predator-Prey catastrophe with root locus. The method of research by root locus is much more evident in determining the extremity points for a different type of catastrophe.As a result of the research with root locus, we have found the extreme points of the catastrophe Predator-Prey function and their location on the complex plane, build the root locus and the catastrophecurve.

Keywords: Catastrophe Theory, Catastrophe Predator-Prey, Root locus (RL), Charts.

Introduction

The theory of Catastrophe is one of the major directions of modern science. It is widely used in various areas of science: mathematics, economics, physics, sociology, biology, etc. Catastrophe theory founder was Rene Tom and Christopher K. Zyman (20th century 60-70s).

There are generally different types of catastrophes: Catastrophe of the type Fold, Build-up catastrophe, Swallowtail catastrophe, Butterfly catastrophe, Predator-Prey catastrophe and others.

Various types of Catastrophes are described by differential equations. The equations parameters are changing; therefore, there is a bifurcation. The equation for one type of catastrophe Predator-Prey is:

(1)
$$v(x,u,v) = \frac{1}{4}x^4 + \frac{1}{2}ux^2 + vx$$

In this equation x is variable and u and v are Coefficients that are changing. Our goal is to examine this model with root locus.

Methods

Root locus (RL) (gr. hodo - Road, Chart) is the unity of the algebraic equation roots' trajectory when the equation's coefficients, one or more, are changing.

Find the (1) equation derivative:

(2)
$$v'(x, u, v) = x^3 + ux + v = 0$$

If we assume that root of the equation (2) is $x=r(\cos\varphi+j\sin\varphi)$, then equation of the root locus will be:

(3) $r^3 (\cos 3\varphi + j\sin^3\varphi) + ur(\cos \varphi + j\sin \varphi) + v = 0 = >$ $r^3 \cos 3\varphi + jr^3 \sin 3\varphi + ur \cos \varphi + jursin\varphi + v = 0$

Real part of this equation is:

(4) Re
$$r^3 \cos 3\varphi + r \cos \varphi + v = 0$$

The imagined:

(5) Im
$$r^3 \sin 3\varphi + ur \sin \varphi = 0$$

From the (5) determine the u:

```
u=-r<sup>2</sup>(sin3q/sinq)
```

```
and insert in (4):
```

(6)
$$r^3 \cos 3\varphi - r3^* (\sin 3\varphi / \sin \varphi)^* \cos \varphi + v = 0$$

Multiply on sinq:

 $r^3 \cos 3\varphi \sin \varphi - r3 \sin 3\varphi \cos \varphi + v \sin \varphi = 0$

From here we have:

- $-r^{3}(-\cos 3\varphi \sin \varphi + \sin 3\varphi \cos \varphi) = -v \sin \varphi$
- $-\cos 3\varphi \sin \varphi + \sin 3\varphi \cos \varphi = \sin (3\varphi \varphi) = \sin 2\varphi$
- $r^3 \sin 2\phi = v \sin \phi = >2r^3 \sin \phi \cos \phi = v \sin \phi$

 $2r^3 \sin \phi \cos \phi - v \sin \phi = 0 =>$

 $sin\phi(2r3\cos\phi-v)=0=>2r^3\cos\phi=v$ and $sin\phi=0$.

 $cos\varphi = \delta/r$, where δ is x-axis and r- module, therefore $2r^2$ $\delta = v$. Root locus located on the left half of the a flat surface, if v>0 and the left, if v<0. This assertion comes from the fact that equation $2r^2 = v/\delta$ is true, only in the case, when $\delta > 0$ and v>0 or $\delta < 0$ and v<0.

For the Root locus construction we use the equation [n;m] class system form. In particular

 $P_n(S)+kQ_m(S)=0.$

*Assoc. Prof. Dr., Faculty of Informatics and Control Systems, Georgian Technical University, Tbilisi, Georgia. E-mail: k.kotrikadze@gtu.ge

Figure 1. Root locus starting points

a) $\delta > 0$ and v > 0 b) $\delta < 0$ and v < 0.

In our case, (2) will be recorded in the following equation:

$$P_3(x) = x^3 + v \mod Q_1(x) = x(k = v).$$

Root locus starting points are the solutions of the equation:

(7)
$$x^3+v=0$$

 x^3 =-v.lf we consider the root record Euler formula $e^{j\omega}$ =sin φ +j cos φ , then from (7) we have:

$$x_{1} = ve^{j(2n+1)} \Longrightarrow x = 3\sqrt{ve^{(j/3(2n+1))}}$$

Root locus starting points are:

$$x_1 = \sqrt[3]{\nu}e^{j\frac{\pi}{3}}x_2 = \sqrt[3]{\nu}e^{j\pi}x_3 = \sqrt[3]{\nu}e^{j\frac{5\pi}{3}}.$$

Final point is: x=0. Chart. 1 a) and b) show the layout. The starting points are marked with "x" and the final points with "o."

Root locus double points can be found by the following formula:

$$\mathcal{P}_n(S)\mathcal{Q}_m(S)' + \mathcal{P}_n(S)'\mathcal{Q}_m(S) = 0.$$
$$3x^2x - (x^3 + v) = 0$$
$$x = \sqrt[3]{\frac{v}{2}}$$

We determine the u at double point from equation (2).

$$u = -\frac{x^3 + v}{x} = -\frac{\frac{v}{2} + v}{\sqrt[3]{\frac{v}{2}}} = -\frac{1,5v}{\sqrt[3]{\frac{v}{2}}};$$

From here:

$$u^{3} = -\frac{\left(\frac{3}{2}\right)^{3} + v^{3}}{\frac{v}{2}} = -\frac{\frac{27}{8}v^{3}}{\frac{v}{2}} => 4u^{3} = -27v^{2}$$
$$=> 4u^{3} + 27v^{2} = 0$$

RL start point is in ordinate centre, because $Q_1(x)=x$ =>x=0.

Figure 2. Root locus for the equation $x^3+ux+v=0$

Figure 3. Bifurcation curve $4u^3+27v^2=0$

To build Root locus we use equality:
$$2r^2\delta = v$$
, where $r \ge \sqrt[3]{\frac{v}{2}}$.
Then $\delta = \frac{v}{2r^2}$ and $\omega = \sqrt{r^2 - \delta^2} = \sqrt{r^2 - \frac{v^2}{4r^4}} = = \frac{1}{2r^2}\sqrt{4r^6 - v^2}$.
Root locus formula is: $\delta = \frac{v}{2r^2}$ and $\omega = \frac{1}{2r^2}\sqrt{4r^6 - v^2}$.
Lets build RL when $v = 8$.
From here changer with any step.

Root locus table is: $r \ge \sqrt[3]{\frac{v}{2}} = \sqrt[3]{4} = 1,5874011$,

Table 1. Parameters of the root locus equation

r	1,5874	1,7	1,9	2,1	2,3
δ	1,59	1,38	1,11	0,91	0,76
ω	0	0,99	1,54	1,89	2,17

Build the equation chart "Fig.3" shown the catastrophe area and bifurcationcurve. The Catastrophe area table is:

 $4u^3 + 27v^2 = 0 = 4u^3 = -27v^2 = 4u^3 = -1.5\sqrt[3]{2v^2}$

 Table 2. Catastrophe Predator-Prey parametrs values

v	0	1	2	3	4	5	6	7
u	0,0	-1,9	-3,0	-3,9	-4,8	-5,5	-6,2	-6,9

Conclusion

The research shows that the root locus method simplifies finding the extreme points, catastrophe areas and building of the bifurcation curve in Catastrophe Theory.

References

Vladimir I. Arnol'd ,G.S. Wassermann , R.K. Thomas . (2003). *Catastrophe Theory*. New York, Heidelberg Berlin: Springer-Verlag.

Richard C. Dorf, R. H. (2008). *Modern Control Systems.* USA: Pearson Education Inc.

Tim Poston, Ian Stewart. (2012). *Catastrophe Theory and Its Applications (Dover Books on Mathematics)*. Mineola, New York: Dover Publication Inc.