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The spectral decomposition continuum approach of 
Rayleigh-Ritz Crellin and Janssens (1983), Hablani (1982), 
Hughes (1974), Meirovitch and Kwak (1993), Pascal (1978), 
(1988), (1990), (1994), Pascal and Sylla (1993), Poelaert 
(1981) has been used to describe the dynamics of elastic 
multibody systems. The cantilever modes Meirovitch and 
Kwak (1993), Pascal (1978), (1988), (1990), (1994), Pas-
cal and Sylla (1993), Poelaert (1981) are generally cho-
sen in the spectral decomposition continuum approach of 
Rayleigh-Ritz to perform the modal analysis of the mechani-
cal system. The reduced impedance matrix of the multibody 
system derived from this analysis is obtained in terms of the 

of the mechanical system. The external torques exerted on 
the multibody system are related to its displacements by 
means of the reduced impedance matrix.

In the present paper, the spectral decomposition con-
tinuum approach of Rayleigh-Ritz is used to describe the 

blade of a helicopter rotor. In previous works, Pascal (1978), 
Pascal and Sylla (1993) neglecting the aerodynamic forces 
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Abstract

Janssens (1983), Hablani (1982), Hughes (1974), Sylla and Barou (2008), Sylla and al 
(2008) neglecting the aerodynamic forces. The blade small elastic vibrations interact-
ing with the standing rotor rotation motions are described by Rayleigh-Ritz continuum 
approach using the cantilever modes. In the present paper, one considers a stationary 

these vibrations. The modal analysis of motions equations using Rayleigh-Ritz discre-
tisation method leads to the blade impedance matrix spectral expansion. This matrix 
enables us to calculate the blade global frequencies in terms of the aerodynamic pa-
rameters.

Keywords: Impedance matrix, cantilever modes, global frequencies, aerodynamic forces. 

-
ing and rotating with constant angular speed involving the 
bending, pitch and twist vibrations of the blade. Under these 
assumptions, the reduced impedance matrix is obtained 
from the modal analysis using the cantilever modes.

Here a new interest is put on the aerodynamic forces 

of this helicopter subjected to aerodynamic forces. Thereby, 
-

pend clearly on the aerodynamic parameters. When making 
use of cantilever modes in Rayleigh-Ritz discretisation the-

these equations, one obtains the spectral expansion of the 
reduced impedance matrix of the elastic blade modelled as 

This matrix relates the blade vibrations of pitch and twist 
angles to an external driving force. The numerical simula-

parameter on the global frequencies of vibrations in a given 
frequencies domain.  

Introduction
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List of principal symbols 

(B1) - Rigid axis of the helicopter rotor 

(B2) = (O O) - Rigid link connecting (B ) and (B )

(B3) = (OA) - The helicopter rotor blade

 - Constant mass density of the blade (OA) 

L - Length of the blade (OA)
��

0 - Constant  angular velocity of the rotor  (B1) 

E - Young modulus of the blade (OA)

T∼ - Axial force in the blade (OA)

(R ) - Absolute reference frame 

(B1) - Rotating frame relative to (R )

(R2) - Reference frame giving the orientation of (B2) with re-
spect to (R1)

(R3) - Reference frame giving the orientation of (B3) with re-
spect to (R2)

(R) - Material reference frame connected to O

p p
* - Circular frequencies associated with the pth cantile-

ver mode of the blade  (OA)

 - Frequency of the global motion of the blade (OA)

f f', '' - Space derivative of the function f

q q,
... - Time derivative of the function q

Kinematics of the rotor blade 
1.1 Reference frame

The blade (B3) = (OA -
ments of:

Length l, mass m, constant mass density  and Young 
modulus E.

The blade (B3) is connected to rotor rigid axis (B1) by the 
means of the link (B2) = (O O), which is articulated on points 
O  and O, respectively with (B1) and (B3). The rigid link (B2) 

-
spectively in the joints O   and O. In this work, one proposes 
an aerodynamic model of a helicopter rotating rotor blade 

• (R )=(O ; x  , y  z ) is the absolute reference frame with 
(O ; z  ) vertical axis of the rotor (B1);

• (R )=(O  ; x  , y , z ) is a frame rigidly connected to the 
rotor (B1), rotating relative to (R ) with constant angular 

velocity vector  
��

0 , involving bodies (B2) and (B3). The 
frame (R ) is deduced from (R0) by rotation ( )t  around 
(O  ; z  ) such as:

0 0 0

.
,

.
( )z t ; 

(1)

y
a

y z
1

1 2
1 2 1 1 0

0 0
0 0 � ^

(2)

• (R )=(O ; x1, y2, z2 ) is a frame connected to the link (B2) 
= (O O) undergoing small pitch with angular velocity 
vector 

��
1, relative to the rotor (B1). (R )  is deduced from 

(R1) by rotation of pitch angle ( )t  measured around 
(O ; x

• (R3) = (O; x , y , z ) is a frame connected to the blade 
(B3) to point O. One deduces the frame (R3) from (R2)  by 
rotation of small twist angle  measured around the 
axis (O; z ) with an angular velocity vector 

��
2 :

•  (R)= (0; x, y,z )
� �� �

 is a material reference frame rigidly 
connected to point O
the beam (OA) is lying on the axis (0; y

3

��
)

One deduces the frame (R) from (R3) by rotation of small 

angle  measured around the axis (0; y
3

��
)

1 and 3) with an angular velocity vector 
��

2:

The point M  is the position of a material point M in the 
OA). One deduces from 

(1), (3), (5) and (7), the frame (R) absolute angular velocity 
vector  

��
2:

The small rotations ( )t of the rigid link (B )=(O O) 

��

��

��

��

��

��

��

��

�� �� ��

��

�� �� ��

(3)

(4)

(5)

(6)

(7)

(8)

(9)
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around the axis )22

� , introduce the small displacement 

of the origin O r�  expressed in the 
frame (R) components such that:

Here, O  is the reference position of the origin O when 

The small elastic displacements of a material point M of 
the blade (OA) are represented by the vector , measured 
in the local frame (R

Where M  is localized by the space parameter s such 
that:

 are the bending deformations and   is 
the longitudinal deformations of the blade (OA). Since the 
length of the blade (OA) is not expandable during defor-
mation,  is obtained in the form (Crellin and Janssens 
1983, Pascal 1994 and Pascal and Sylla 1993);

As consequence of (14) in the following, u are neglected 
in the linear theory, where r , r , r  and their 
time and space derivatives are assumed to be small and 
of the same order. Its results from (1), the frame   absolute 
linearized angular velocity 

��
2:

1.2 Absolute acceleration of a material point M

The absolute position vector X
��

 of a material point M of the 
blade (OA) is:

Using formulas (10), (11), (12) and (13), one obtains in 
the frame (R) components, the absolute position vector:

Here l0 . The absolute velocity vector V
��

 of a 
material point M is:

One deduces from (18), the linearized absolute velocity 
vector:

And the norm of speed vector is:

It results from (16) the absolute acceleration vector 
( , )M t  of a material point M :

One deduces from (21), the linearized absolute acceler-
ation vector ( , )M t  of a material point M, in the frame (R) 
components:

 

[Figures 1, 2, 3 and 4]
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(17)
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Dynamics of the rotor blade 
2.1 Aerodynamic forces

The aerodynamic forces vector Pa
��

 exerted on the rotor 
blade is of the form (see appendix for further details and 
understandings):

where:

R  is the cross section radius of the blade, * is the air 
density and  is the air rigid pitch angle with respect to the 
axis (O;x�3).

2.2 Local motion equations

The Euler-Bernoulli theorem developed in the work of Crel-
lin and Janssens (1983), Wallrapp (1990), Sylla and Barou 
(2008) and Sylla and al (2008) is used to describe local mo-
tion of the rotor blade (OA) by taking into account the aero-
dynamic and gravity forces:

where T s( ) is the axial force in the blade (OA), Crel-
lin and Janssens (1983), Pascal (1994),  Sylla and Asséké 
(2008), Sylla and Gomat (2008), Sylla and Barou (2008) 
and Sylla and al (2008) (refer to appendix):

2.3 Global motion equations

The fundamental principle of dynamics is applied to the 
blade to develope global motion equations. One obtains the 

two following equation systems:

Here F and M  are re-
spectively force and torque exerted on the rotor blade at the 
boundary .

2.4 Boundary conditions

Superposition methods of rayleigh-ritz 
3.1 Representation of the elastic displacement

When using Rayleigh-Ritz continuum approach method, 
Crellin and Janssens (1983), Hughes(1974), Pascal (1994), 

(23)

(27)

(28)

(29)

(24)

(25)

(26)
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Pascal and Sylla (1993), Poelaert (1981), Sylla and Barou 
(2008) and Sylla and al (2008) [1], [3], [8], [10], [11], [15] and 

 and  the solu-
tions of the equations (16), (18) and (19), are of the form:

where vp  and p  are chosen to be the cantilever modes 
(Crellin and Janssens 1983, Hablani 1982, Hughes 1974) of 
the blade (OA). *p are the associated generalized coor-
dinates. According to the previous work of Wallrapp (1990), 
one obtains (see appendix):

here Ap,Bp,A
*

p and B*
p are constants;

where p and p* are circular frequencies corresponding 
respectively to the cantilever modes vp  and p . These 
cantilever modes are normalized Crellin and Janssens 
(1983), Hablani (1982), Pascal (1988), Wallrapp (1990) and 
Sylla and Barou (2008), such as:

3.2   Determination of the generalized coordinates

The solutions of the form (30) are injected into the equations 

(25). Then the equations (25) are multiplied by the cantile-
ver modes vp  and p . When integrating these equa-
tions for  and taking into account the orthogonality 
property (33), one obtains;

and

where:

When retaining N cantilever modes in the series of (30) 
and when assuming the following harmonic forms: 

(30)

(34)

(35)

(36)

(37)

(31)

(32)

(33)
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One can rewrite the equations (34) and (35) in the fol-
lowing forms:

Here:  

•  are the column matrices of the generalized coordi-
nates of  (37):  

• K, K*, G, G*, S, S* are the column matrices of the fac-
tors  (36):  

• B, B* are square symmetrical matrices (N×N) with re-
Bpq ),(B

*
pq );    

•  I  is the unitarian matrix (N×N) the symmetrical matri-

and Asséké (2008), Sylla and Gomat (2008), Sylla and 
Barou (2008) ) such as :

Here: 

p p
* are the respective eigenvalues of the 

(43)

symmetrical matrices B, B*.

• pq pq
*

of the orthogonal matrices 

Using the diagonalization formulas (43) in equations 
(38) and (39) and having the following conditions (45) car-
ried out:   

one obtains the scalar generalized coordinates
  

and

here:

(38)

(39)

(40)

(42)

(41)

(44)

(45)

(46)

(47)
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Kq, Gq, Sq, Kp
*, Gp

* and Sp
* are obtained from formulas (36).

3.3 Derivation of the impedance matrices

The two bending vibration motions  and are coupled 
contrary to the works of Sylla and Barou (2008) and Sylla and 
al (2008). The global motion equations (18) and (19) can be 
transformed by using the discretization (30) of displacements 

 and ,  the harmonic forms (37), formulas (46), (47) 
and scalars generalized coordinates  and . One obtains 

where:

• ,  column matrices of displacements and forces re-
spectively : 

•   the reduced impedance matrix of the rotor blade 
. Z is given by a spectral expansion in terms of the 

cantilever modes (Crellin and Janssens 1983, Hablani 
1982, Hughes 1974, Pascal 1988, 1990, 1994, Pascal 
and Sylla 1993 Sylla and Asséké 2008 and Sylla and 
Barou 2008):

where:

and:

(51)

One also obtains; 

where

and

(48)

(49)

(50)

(52)

(53)

(54)

(55)

(56)

with
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The global frequencies  of the bending 
vibration modes  and  are the roots of the impedance 
matrix Z such that:

Numerical simulations 

The simulations are done with the following data, Wallrapp 
(1990):

EIx and EIz are identical, the 
two cantilever bending modes vp  and p  are the same 
(see formulas (36)):

It results that the circular frequencies p, p
* correspond-

ing respectively to vp  and p  are identical: p p
*.

A numerical program computes the cantilever bending 
frequencies p in Table 1.

The cantilever bending frequencies p are used by a 
numerical program to compute the global frequencies p 
(Figures 5).

Figures 5 show that the global modes have certain val-
ues of frequencies in common. One deduces the behavior 

frequencies (see Figure 6).

With 0
its values for angular velocity values from 0 to 3 rad/s and 
gives a rise to two other frequencies of 0  rad/s. One of 
these frequencies follows a decreasing parabolic function 
from 1 for 0  to 1  for 0

. The other frequency with an increasing quasi linear 
evolution of 1  for 0  to 1
for 0 .

While 0 , the cantilever frequency follows two evo-
lutions, one constant and the other decreasing parabolic 
function, identical to those obtained in 0 .

Referring to these results it can be said that, taking into 
account aerodynamic forces in the dynamic modeling of a 

frequencies, which are absent in the previous studies.          

And one observes the presence of cantilever frequen-

cies, among the global frequencies of the system, for each 
given value of angular speed.                                    

Conclusion 

The aerodynamic model presented in this work complete the 
modeling by continuum approach of a rotating  rotor blade 
of a helicopter which supposed to be standing, carried out in 
the previous works of Sylla and Barou (2008) and Sylla and 
al (2008). The motion equations are elaborates when taking 
into account the aerodynamic and gravity forces exerted on 

The spectral development of the impedance matrix 
showed the presence of the cantilever frequencies among 
the obtained numerically global frequencies obtained, for 

twist angles on the elastic behavior of the rotor blade is also 
observed.
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Appendix 
Aerodynamic forces

-

P. Muller (1995) is used to model the aerodynamic forces 
(Figure 7).

The cross section of the blade is considered as a circle 

a circle is, P. Germain, P. Muller (1995) and Servera (2002):

here V* and * are respectively winds speed and incident 
angle (relative to x3 axis), * is the air circulation around the 
circle of radius R0.

Any circle point was spotted by the complex number Z 
such as:

 and  

According to the Kutta-Juckosky condition, P. Germain, 
P. Muller (1995) and Servera (2002), velocity to the trailing 
edge ( *

Therefore the air velocity around the circle is:

volume forces, it comes;

where, Pe and Pi are respectively the pressure exerted 
by the air in extrados  and in intrados 

 of the cross section and * is the air density. It is the 
-

namic forces on a circular section (Figure 8).

and

where F , F  are respectively the drag and lift  aerody-
namic forces density (see Figure 8).

Moreover, in this study, we suppose that the incident ve-
locity of the air with respect to the blade is:

-
ed before the angular velocity 0. And, the incident angle 
of the air with respect to axis x�3  is written as follows:

Where 0 is the rigid incidence angle of the air with re-
spect to the axis x�3  and  which represent the pitch 
angle and the motion parameter. It leads to:

with
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Local motions of the rotor blade (OA)

The local motion of the rotor blade (OA) is governed by the 
dynamics fundamental equations, Crellin and Janssens 
(1983): 

where   are respectively the force and torque ex-
erted into the rotor blade , of components in frame : 

Let’s recall that X
��

 is the position vector of a material 
point M of the rotor blade , given by formulas (16),  
and  which are respectively the gravity and aerodynamic 
forces vectors exerted on the rotor blade. Formula (a.1.1) 
becomes:

One obtains components of the axial force vector:

and

One assumes Euler-Bernoulli beam for the rotor blade 
(OA). So that

By derivating equation (a.1.2) with respect to the vari-
ables, one obtains:

It results from the last equation combined with (a.2), 
(a.3) and formulas (a.4), (a.6), the linearized equations of 
the rotor blade (OA) local motion:

[Table 2]; [Figures 9 and 10]

(a1.1)

(a.2)

(a.3)

(a.4)

(a.5)

(a1.2)

(a.6)

(a.7)

(a.8)
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Tables

Table 1. 0  rad/s, cantilever bending frequencies

Table 2. Values of   the global frequency when 0 tends towards 0 rad/s

Figures

Fig. 1. 
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Fig. 2. Fig. 3. 1 2

Fig. 4. 

Fig. 5. 
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Fig. 6. 

Fig. 7. 

Fig. 9. 

Fig. 8. 
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Fig. 10. 0
th th


