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Abstract

The aim of the present investigation is the dynamics of a rotating flexible mechanism
composed of a helicopter main flexible rotor blade. In previous works of Crellin and
Janssens (1983), Hablani (1982), Hughes (1974), Sylla and Barou (2008), Sylla and al
(2008) neglecting the aerodynamic forces. The blade small elastic vibrations interact-
ing with the standing rotor rotation motions are described by Rayleigh-Ritz continuum
approach using the cantilever modes. In the present paper, one considers a stationary
flight of the helicopter subjected to aerodynamic forces. The differential equations of
the flexible blades vibrations show the interaction between the aerodynamic forces and
these vibrations. The modal analysis of motions equations using Rayleigh-Ritz discre-
tisation method leads to the blade impedance matrix spectral expansion. This matrix
enables us to calculate the blade global frequencies in terms of the aerodynamic pa-
rameters.

Keywords: Impedance matrix, cantilever modes, global frequencies, aerodynamic forces.

Introduction

The spectral decomposition continuum approach of
Rayleigh-Ritz Crellin and Janssens (1983), Hablani (1982),
Hughes (1974), Meirovitch and Kwak (1993), Pascal (1978),
(1988), (1990), (1994), Pascal and Sylla (1993), Poelaert
(1981) has been used to describe the dynamics of elastic
multibody systems. The cantilever modes Meirovitch and
Kwak (1993), Pascal (1978), (1988), (1990), (1994), Pas-
cal and Sylla (1993), Poelaert (1981) are generally cho-
sen in the spectral decomposition continuum approach of
Rayleigh-Ritz to perform the modal analysis of the mechani-
cal system. The reduced impedance matrix of the multibody
system derived from this analysis is obtained in terms of the
cantilever modes used to describe the distributed flexibility
of the mechanical system. The external torques exerted on
the multibody system are related to its displacements by
means of the reduced impedance matrix.

In the present paper, the spectral decomposition con-
tinuum approach of Rayleigh-Ritz is used to describe the
dynamics of a flexible mechanism composed of a flexible
blade of a helicopter rotor. In previous works, Pascal (1978),
Pascal and Sylla (1993) neglecting the aerodynamic forces

influence, this helicopter rotor was supposed to be stand-
ing and rotating with constant angular speed involving the
bending, pitch and twist vibrations of the blade. Under these
assumptions, the reduced impedance matrix is obtained
from the modal analysis using the cantilever modes.

Here a new interest is put on the aerodynamic forces
exerted on the blade. Taking into account a stationary flight
of this helicopter subjected to aerodynamic forces. Thereby,
the partial differential equations of the blade motions de-
pend clearly on the aerodynamic parameters. When making
use of cantilever modes in Rayleigh-Ritz discretisation the-
ory to describe distributed flexibility in the modal analysis of
these equations, one obtains the spectral expansion of the
reduced impedance matrix of the elastic blade modelled as
a flexible beam.

This matrix relates the blade vibrations of pitch and twist
angles to an external driving force. The numerical simula-
tions performed, establish the influence of the aerodynamic
parameter on the global frequencies of vibrations in a given
frequencies domain.
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List of principal symbols

(B,) - Rigid axis of the helicopter rotor

(B,) = (0O-0) - Rigid link connecting (B:) and (Bs)
(B,) = (OA) - The helicopter rotor blade

P - Constant mass density of the blade (OA)

L - Length of the blade (OA)

?20 - Constant angular velocity of the rotor (Bl)
E - Young modulus of the blade (OA)

T - Axial force in the blade (OA)

(Ro) - Absolute reference frame

(B,) - Rotating frame relative to (Ro)

(R,) - Reference frame giving the orientation of (B,) with re-
spect to (R))

(R,) - Reference frame giving the orientation of (B?) with re-
spect to (R,)
(R) - Material reference frame connected to O

ap,ap* - Circular frequencies associated with the p”’ cantile-
ver mode of the blade (OA)

Q2 - Frequency of the global motion of the blade (OA)

f' f" - Space derivative of the function f

¢,q - Time derivative of the function g

Kinematics of the rotor blade
1.1 Reference frame

The blade (B,) = (OA) is modelled by flexible beam ele-
ments of:

Length I, mass m, constant mass density p and Young
modulus E.

The blade (Ba) is connected to rotor rigid axis (B,) by the
means of the link (B,) = (020), which is articulated on points
O:and O, respectively with (B,) and (B,). The rigid link (B,)
mass is neglected and localized stiffness are introduced re-
spectively in the joints Oz and O. In this work, one proposes
an aerodynamic model of a helicopter rotating rotor blade
(figure 1). Let us denote by:

*  (Ro)=(01;Xo, Yo, Zo) is the absolute reference frame with
(O1; 20) vertical axis of the rotor (B,);

*  (R2)=(01;%1,¥1,Z0) is a frame rigidly connected to the
rotor (B,), rotating relative to (Ro) with constant angular

velocity vector O, involving bodies (B,) and (B,). The
frame (R:) is deduced from (R ) by rotation ‘¥'(t) around

(O1; 7o) such as:

Q,=¥z,,Q, =¥0):
(1)
5= o] 5 =505,

)

* (R2)=(0z%,Y¥,Z,) is a frame connected to the link (B,)
= (020) undergoing small pitch with angular velocity

vector (), relative to the rotor (B,). (Rz) is deduced from
(R,) by rotation of pitch angle 6(t) measured around
(Oz; x1) (see figure 1):

0, = 8()%,; (3)

5 =500 = [00], =t AT @

* (Ry) = (O; X5 ¥3, 22) is a frame connected to the blade
(B,) to point O. One deduces the frame (R,) from (R,) by
rotation of small twist angle ¢(#) measured around the

axis (O; Zz) with an angular velocity vector Qo
0, = ¢(DZy; (5)

V3 = .ﬂf_ﬂ-rI = ||E"-:||,.‘E_-1 = F3 N By (6)

. (R)=(0,';c,;,2) is a material reference frame rigidly
connected to point O. In the undeformed configuration,

the beam (OA) is lying on the axis (0;;3) (see figure 1).
One deduces the frame (R) from (R,) by rotation of small

angle B(t) measured around the axis (0; y,) (see figures

1 and 3) with an angular velocity vector Qs:
{13 = f(O)Fs; (7)
V=05 (&, D= D) =p), E=3nrZ (8
The point }/ is the position of a material point M in the

undeformed configuration of beam (OA). One deduces from
(1), (3), (5) and (7), the frame (R) absolute angular velocity

vector Q:

©)
ﬁ=ﬁ|}+ﬁ]+ﬁ2+ﬁ3=¢iu+gj]+@zf+lﬂll}}'

The small rotations O(t) of the rigid link (B2)=(020)
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around the axis (O,;X,), introduce the small displacement

of the origin O, defined by the vector r expressed in the
frame (R) components such that:

Ff=0,0=n({)%+r(t)y+nr(t)z (10)

Here, Op is the reference position of the origin O when
6 = 0 (see figure 1):

0,0, = by, |0.0,|| = |020]| = b (11)

The small elastic displacements of a material point M of
the blade (OA) are represented by the vector i, measured
in the local frame (R) such that (see figure 2):

(12)

Hy(s,t) = MM = v(s, )% + u(s, OF + w(s, )7,

Where M is localized by the space parameter s such
that:

OM =s7;0<s<1=04 (13)

v(s,t), w(s,t) are the bending deformations and u(s,?) is
the longitudinal deformations of the blade (OA). Since the
length of the blade (OA) is not expandable during defor-
mation, u(s,?) is obtained in the form (Crellin and Janssens
1983, Pascal 1994 and Pascal and Sylla 1993);

+ (;_jf] de. (14)

As consequence of (14) in the following, u are neglected
in the linear theory, where Fo, ¥1, F3, v, w, 6, @, B and their
time and space derivatives are assumed to be small and
of the same order. Its results from (1), the frame absolute

u(s,0 =11 |G’

linearized angular velocity Q:
(15)

0=(0-0up)% + (B +008)F + (0 + @)7

1.2 Absolute acceleration of a material point M

The absolute position vector X of a material point M of the
blade (OA) is:

—_—

X =0,M=0,0,+0,0 +0M +MM.  (16)

Using formulas (10), (11), (12) and (13), one obtains in
the frame (R) components, the absolute position vector:

X =[r(t) + v(s,t) + I, cos 8 sin g cos f + l,sin@ sinf)x
+[rpt) + uls, t) + [ cos f cos g + 5]

+[ra(t) + wis, t) + |, cos B singsin § — [sinf cosfi]z

(17)

Here I,=a+b. The absolute velocity vector V (M,¢) of a
material point M is:

oo = (%), =), * (&) A

dt {Rl}}_ dt dt (R

(18)

One deduces from (18), the linearized absolute velocity
vector:
(19)

VM, t) = [, (t) + 0(s,t) = s (£) = Qoro(t) — Qo (I + 5)]%
+[7a (8} + 0 (1 () + v(s,£) + 20,0(0)) |7

+[i5(8) + (s, £) = sO(t) + 01y + )B(L)]Z

And the norm of speed vector is:
VM, O = (230 + $)* + 2031, + s)ry — 20, (1, +
+8)(F + 1 — s (20)

It results from (16) the absolute acceleration vector
I'(M,t) of a material point M :

F(M,0) = (%)[Rn:l N (%)m: " (g)m} N

— A% — — -+
+20A (I)m +0A[@AK) 21)

One deduces from (21), the linearized absolute acceler-
ation vector I'(M,t) of a material point M, in the frame (R)
components:

F(M, t) = [#(8) + 8(s,t) = s@(t) — 20,7, (t) —
—05(ry () + vis, 0) + L)% +[7,(0) + 20,(7 () +
+0(s, ) = s@p(t)) = Qiry(t) — Q&L + ) [¥ +[i(6) +

+ (s, t) + s8(t) + Q3 (ly + s)8(0)|Z (22)

[Figures 1, 2, 3 and 4]
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Dynamics of the rotor blade
2.1 Aerodynamic forces

The aerodynamic forces vector P, exerted on the rotor
blade is of the form (see appendix for further details and
understandings):

o7; (23)

where:
Fa = 0and F, = 4nRop N5y + s)*[sin(28,) +
+ 2fcos(26,)); (24)

Ro is the cross section radius of the blade, p* is the air
density and fo is the air rigid pitch angle with respect to the
axis (0;X3).

2.2 Local motion equations

The Euler-Bernoulli theorem developed in the work of Crel-
lin and Janssens (1983), Wallrapp (1990), Sylla and Barou
(2008) and Sylla and al (2008) is used to describe local mo-
tion of the rotor blade (OA) by taking into account the aero-
dynamic and gravity forces:

(25)
( ( () + (s, t) = (L) = 207, (L) = )
Pl=03(r(0) + v(s,0) + Lo (D) — g (1)
eI, 20 2 (1) =0
p(#(8) + (s, £) — sé(£) = D3(L, + $)B(t) + &)
—BuRyp* (5 (Ly + s)*cos(26,)B(2) -

—AgRyp 5 (1l + 5)%sin(28,)
1, S (10%)

dst a5 a5

where T'(s) is the axial force in the blade (OA), Crel-
lin and Janssens (1983), Pascal (1994), Sylla and Asséké
(2008), Sylla and Gomat (2008), Sylla and Barou (2008)
and Sylla and al (2008) (refer to appendix):

T(s) = -.Uﬂ (Lo + 1% = (g + 9)°); (26)

El; and EL are the flexural rigidity of the blade.

2.3 Global motion equations

The fundamental principle of dynamics is applied to the
blade to develope global motion equations. One obtains the

two following equation systems:
(27)
mi (t) - m?rqr?'[l‘] = 2mQy7,(t) —
—m@5(ry (1) + Lp(0)) =
—mgfi(t) + L:piﬁ(s,t]ds -ﬂ.ﬁj{:p v(s, t)ds = Fy(t)
m#y () + mQy (27, (t) — lp(t)) — mQry () + mgh(t)

| =m0}l + 1) +29, f’p (s, t)ds = Fy(t)

mi, () + -m!E[t] += mﬂ a2l + De(t)
—-:rR o IE(31E + 3IUI +1®)cos(2B,)B(t)
- —nRup I05(315 + 3ol + 1*)sin(26,) +
\ + _[D pw(s, t)ds = F3(t)

(28)
( ﬂr_;_(t]l +ﬂa( £) +”—”n2|:3:u+ 20)8(t)
—Rop" (613 + 8Lyl + 31%)cos(2By)B(2)
— =1Rop" PQG(6I5 + 8lol + 312)sin(2p,) + - mgl
+ [3 psiv(s,t)ds + 03 [, p (1o + s)w(s, )ds = M, (t)
Jy[=pg + 4mRop Q3 (U, + 5)?sin(2By)lvds = My(2)
ml . mi?

=22 () + 5 () + miig(6) + 5 03 (ry (6) + Lo (B)
(+ Emgf_!?{t} - _[“ psii(s, tds — 1,03 f“p v(s, t)ds = M3(t)

Here Fu(?), F2(t), Fs(t) and Mu(?), Mz(t), Ms(t) are re-
spectively force and torque exerted on the rotor blade at the
boundary s = 0.

2.4 Boundary conditions

v(0,t) = v'(0,t) = 0
i?”{“} — U“JU.!‘-} =0 .
F(t) = =ELv#(0,t)°
M,(t) = —ELv"(0,t)

w(0,t) =w'(0,t) =0

wre) — W{J’J{L fJ =0

Fo(t) = —ELw™(0,t)
M,(t) = EL,w"(0,t)

(29)
Superposition methods of rayleigh-ritz
3.1 Representation of the elastic displacement

When using Rayleigh-Ritz continuum approach method,
Crellin and Janssens (1983), Hughes(1974), Pascal (1994),

10
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Pascal and Sylla (1993), Poelaert (1981), Sylla and Barou
(2008) and Sylla and al (2008) [1], [3], [8], [10], [11], [15] and
[16], the elastic displacement field v(s,2) and w(s,?) the solu-
tions of the equations (16), (18) and (19), are of the form:

{v(-\: t) = Epoy vp(s)A,(0) (30)

wi(s, t) = T, wy(s)A,(t)

where vp(s) and w (s) are chosen to be the cantilever modes
(Crellin'and Janssens 1983, Hablani 1982, Hughes 1974) of
the blade (OA). Ap, A"p are the associated generalized coor-
dinates. According to the previous work of Wallrapp (1990),
one obtains (see appendix):

(31)
vp(s) = 4, (ch[s,up) - cas(s.up]) +
+B, (sh(s,up} - sin(f;,up:])
wy(s) = A3 (ch(sup) — cos(sup)) +
+B; (sh(su;) — sin(su;) )
here AP,BPA”P and B’P are constants;
1
LAY
wp = (=)' Ja
P (EIZ) ’-"; (32)

o

= (&) Vo

where a._and a_* are circular frequencies corresponding
respectively to the cantilever modes v (5) and w (s). These
cantilever modes are normalized Cprellin andp Janssens
(1983), Hablani (1982), Pascal (1988), Wallrapp (1990) and
Sylla and Barou (2008), such as:

| L
j pryv,ds = f pWyw,ds = 8,,; VD, q.
0 0

Opgls the usual Kronecker symbol:

5”‘?-{1.?:{? )

3.2 Determination of the generalized coordinates

The solutions of the form (30) are injected into the equations

(25). Then the equations (25) are multiplied by the cantile-
ver modes V (s) and w (s). When integrating these equa-
tions for 0 <'s <[ and taking into account the orthogonality
property (33), one obtains;

(34)

Ag + (ai - !lﬁ}ﬂq + Z Tpgdp = —pKmfy + 2jpQeKnto
p=1

+PpQi Ky + ploQ K@ + pGrnp + pgK

and
(3%)

X o+ aiay + Z Tk = —pKiniy — PGyl —
p=1
= pQi(loKy, + Gp,)0
+3ﬂﬁuﬁ'.§2§(‘ﬂ!€{2ﬁu]{f%ffr;, + 5+ 2,608

+4TR,p QU sin(2B) (1B K, + Sm + 210G — pgK:

where: (36)

{

Kq = f vg(s)ds; Kg = J‘ wy(s)ds;
0 0

Gy = Jy sv(s)ds; Gy = [ swq(s)ds;

I I
S, = j sty (s)ds; §; = f stw, (s)ds;
o 0

I I
Tpg = Lf‘(s]v'n(s]u'ﬂﬁs}rfs: Tpg = J; f‘{s]w’p(s}w};(s}h‘&

When retaining N cantilever modes in the series of (30)
and when assuming the following harmonic forms:

Ag(8) = A/t An(t) = Ajele;

8,(t) = 8,879 g, (8) = Goel®t; B (1) = fre™t;
r(t) = fel®h ry(t) = fpe!t; 1 (t) = fel;
Fi(t) = Fielt; F(t) = Fyelt; Fy(t) = Fyel®t;
M, () = Myel®t; M,(t) = M,el®t; My(t) = Melot.

=l (37)

11
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One can rewrite the equations (34) and (35) in the fol-
lowing forms:

[B = (w? + Q3|1 = 2jpwQ,Ki, + p(w? + Q3)KF,
+p(l Q5K — w*G)P + pgk (38)
[B" — 1A' = pw’K'f, + p[w?G” — Q§(I,K" + G*)]d

+ 8mRyp Nicos(2B,)(12K" + 5 + 21,67)f

—pgK”* + 4Ry p QEsin® (B) (IZK" + 5* + 21,G").
(39)

Here:

A, A" are the column matrices of the generalized coordi-
nates of (37):

3= (e d)s 0= (B ) (40)

o K K* G, G* S, S* are the column matrices of the fac-
tors (36):

K= (K, . KT K= (K KT
G =(Gy,...Gy)": G = (G, ...Gy)"; (41)
5= {51- ---.-SN]]-: Loal {5;, ----s.ir}T-

o B, B* are square symmetrical matrices (NxN) with re-
spective coefficients (B, ),(B‘m );

{Bﬂu =Tpg t “ﬂﬂuﬁﬂu (42)
Bpq = Tpq + apagdy,

* | is the unitarian matrix (NxN) the symmetrical matri-
ces B, B* can be diagonalized in the form of §,9"*by
the means of the orthogonal matrices x,x** from (Sylla
and Asséké (2008), Sylla and Gomat (2008), Sylla and
Barou (2008) ) such as :

B = yox"
w w y* . T (43)
B* = x"9"x
Here: (44)
by 0 0 0 by 0 0 0
0 b, 0 0 0 b 0 0
= 0 yit= s 0 :
oo 1] 0 0
0 0 0 by 0 0 0 by
bp,bp’a) = 1, ...,N) are the respective eigenvalues of the

symmetrical matrices B, B”.

xm,)(m‘(p, q ., N) are respectively the coefficients
of the orthogonal matrices

"=(xpe) Xx=xx"=

T =xat =1

0x'x = (pg) X

Using the diagonalization formulas (43) in equations
(38) and (39) and having the following conditions (45) car-
ried out:

b, # w® + £
{ e (45)
bp #

one obtains the scalar generalized coordinates
A ,l‘{p =1, ... N)
(46)
_ EN plw? o0l ) xpaky — 2jpultyxpgky] .
= _th I:ﬁ.l2+ﬂz'} 1 g=1 bq—[m2+ﬂ.ﬁ)
n Pl xpakq-® xpqiq) PRXpakg | 5
[E bg—(w?+0F) ¢+ ‘? ]b ~{w?+0) p
and (47)

i= [E.-: ol *‘EERE] , + [EN o (008 ) tpagg-to2 xmkq}lé

g=1 -l
by=w" bpm

b=

+ IE"

" 2 . ® 5 " . "
+ }:3._1 - PGXpaks+4nRyp [‘znﬂnIIIﬂu}[ifxmkqﬂpqsqumxmgq]|
= o
P

BRyp {}ﬂcasczﬁaJ{rﬂxpﬂkﬂ+stﬂ+zruxaqg'q]] g

here:

k= xTK = (ko k)T Koy = qu,,xq;k* = TK =
g=1
N
kg = ZX&PKJ?
q=1

rgN}T-Hp = z,?.’qpﬁq: g = I'T'G' =

q=1

= (ki ... k3"

g=x"6= (g
N

= (81,80 8 = D XapGi:
q=1

8= XTS = l:Sir rs.'u':l?.rsp = qupsq: §° = I.TS. =
qg=1

12
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N
= (s],..,8y)"; s¢ = Z}_’r}pi}:
q=1

K . Gq,S’q,K G andS are obtained from formulas (36).

3.3 Derivation of the impedance matrices

The two bending vibration motions v(s,#) and wys,#) are coupled
contrary to the works of Sylla and Barou (2008) and Sylla and
al (2008). The global motion equations (18) and (19) can be
transformed by using the discretization (30) of displacements
v(s,8) and w(s,#), the harmonic forms (37), formulas (46), (47)
and scalars generalized coordinates 4, and J[' One obtains
finally (see appendix):

R=(f,000,0,0), 0=

Z(@)R =0 (48)

where:
R, @ column matrices of displacements and forces re-
spectively : (49)

(ﬁ‘h ﬁ‘z_. ﬁ:;. H]-ﬁ:!-' 'ﬁ:f]

Z(w) the reduced impedance matrix of the rotor blade
(OA). Zis given by a spectral expansion in terms of the
cantilever modes (Crellin and Janssens 1983, Hablani
1982, Hughes 1974, Pascal 1988, 1990, 1994, Pascal
and Sylla 1993 Sylla and Asséké 2008 and Sylla and
Barou 2008):

Z(w) = Zy + Xg=1Z4 (50)
Zy=ZR + jzl; with j? = -1 (51)

where:

GF oo 0 0GRGH
0 G&, %65} 00
g_ | 0 0 G3HGE, 0 Gag |
% = 0 0GEGH 0 G | %2)
0009 00
Gg; 0 0 DGERS&
and: 0 00000
G, 0 006550
g -| 000000
1 o0 0oooo0| (83)
0o 0o00o0
0 GL00 0 0

One also obtains;

Zy=Zf +jzy with j*=-1 (54)
where
V& 0o 0 o ViV

0
3 55
, 0 VAVA OV >
Vsi 0 0 0 Vsshig
0

oo Vﬁgifﬁ&

and 0 V200 0 0

Vi, 0 00VisVi,
4| 000000 |
q 0o 0poo 0 |

0 V000 0

0 v.,00 0 0

(56)

the coefficients of the matrix Z are (see appendix):

Gfy = —pl(Q} + w*); GF, = —pl(Qf + 0?);
Gis = —ﬂi(im — 21,9%); Gf, = pgl; G = —plw?;
R 1 2
Gl = —pgl; 6%, = 5 pl (lw? + Qf2L + D);
" B 2 2 2 R
636 = _EﬂRﬂlﬂ ﬂﬂcas{zﬁnjr(3fﬂ + 3{0! +1 }: 543 =
1
= Epfzwz
1
Gfy = zpl? ((3;0 + 2002 — 2m2); G, =
Z 0122 2 2
= _EHRDP [ ﬂucﬂsizﬁﬂ}{ﬁfﬂ + Bfuvf + 3l ):
1 .
GE = Epiz{ﬂﬁ + w?);
e 1 , . 1
GE = Eprz(zrunu - 2lw?); G& = Epg:‘.

Gl = 2plwSyy; Gis = —pllwlly; Gl = pllwlly;

= —p(QF + -f}[% .

+w?)]’

13
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loQik§ — w?kqgq ,
by — (5 + w?)

VE = —p2(ed + wz][

R _ 2 Py .
V= —p(Qf +w }[Tnﬂ)
VR = — (2pwy )2k _

“T b - (95 +w?)’

Y
Vis = ——(‘Mzk“z ;
by —w
(Qf + w?)kygy — L Q5ky
Vi = —ptat [

[3ka® + kgsg + ztﬂkng)]

Vi = —8rRop" pw?Qgeos(2f,) [[ by — o

B
Vi

= p2u? Lo Qokg® + (2 — mz)kng
P by — w?

L2k 4 (0F — w?)g*)’
V4’i=ﬂ2[(u oki + (2 w]g*?]l;

o 2
by —w

1Q0ky" + 21(QF — w*)gy®  13(30QF — w?)kyg; + LQok;sy + (95 — w?)gys;
Vi, = Bnkp'pefcos(apy [0t 2l — 0BG | 008 - g+ ik + (06— o s,
q q

(~pa+ 4mRop" BQLsin(260) ) K + 4mRop" Qsin(260) (2lokagq + keso)

VR = p(02 + w?
51 P( 0 ':"-"] bq—[ﬂ§+w2]

1,07 [—pg + 4?7Rup'£§ﬂ;sin(2ﬁu}) kZ — 8Ryp" L sin(2f,)g?
- (9 + w?)

(pgaF + 4nRup‘I§ﬂ§[Zﬂﬁ - mz)sin@ﬁa}) kqgq

o+
by — (5 + w?)

4rrﬂup Qisin(260) (1o kqs, — ngfrsfr]].
be — (2 + w?) ’
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1623 (~pg + 4mRop" BREsin(2h0) ) k2 — 8Rop L, Q3w sin (2603
by — (9§ + w?)

® 2 2 -
(»"g"*’z +4mRop" 150, (205 — "*2]'5*“'[2130)) keBa  anRyp Q2sin(2B,)(1o02k,S, — 02845, )

+
b, — (ﬂé + w"’-} by — {ﬂﬁ + w?)

V& = pg

(—pg + 4nn“p*1.§nism{2ﬁﬂ}) k2 + 2nRyp" Q2sin(2B0) (2Lok8q + KqSy)
b, — (% + @) ;

1,35 k2 — @k
= (o ) [

by — (95 + w?)

l"rR _ 2 (!Gﬂgkr] _’ngq}z- .
ST - (@) |
a o T w ) ]

!nﬂﬁkg —wqugq'
by — (95 + w?) |

Vie = ng[
(05 + w?*)k2

l,.rﬂ_ = =2 2 0} q :

(9% + kg |

by = (95 + w?)]’

lgS2kZ — mﬂkng] .
by — (02 + w?)

Vi = 2ptwll

Vis = 215‘2‘”9&[

peks I
Vie = 2pwlly |——1—|;
S n[bq—[w2+ﬂ§]

. .
(=ps + 4nRop" B sin(2p0) ) K; 4Ry p* Qhsin(2By) 2Lk o8q + kysy)]

Vi, = 2pwd :
52 = £PW3%0 by — (2 + w?) by — (92 + w?)

LQ2k2 — w2k
vl = —2p2mﬂn[“ﬂ“ a ‘?g"].

by — (%5 + w?)
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The global frequencies wq (g = 1, ..., ) of the bending
vibration modes v(s,z) and w(s,?) are the roots of the impedance
matrix Z such that:

detZ(w,) =0, q=1,..,00

Numerical simulations

The simulations are done with the following data, Wallrapp
(1990):

I=dm: p= 13935 kglm; o= 0.6 n: b =02 m;
b=02m; El, = El, =1.9=10*Nnm*, m = 55.74 ke.

Since the flexural rigidity Ef_and EI are identical, the
two cantilever bending modes vp(s) and wp(s) are the same
(see formulas (36)):

El, = EI, = v,(s) = wy(s).

It results that the circular frequencies a,, ap‘ correspond-
ing respectively to vp(s) and wp(s) are identical: ap=ap‘.

A numerical program computes the cantilever bending
frequencies a, in Table 1.

The cantilever bending frequencies a, are used by a
numerical program to compute the global frequencies o,
(Figures 5).

Figures 5 show that the global modes have certain val-
ues of frequencies in common. One deduces the behavior
from the first frequency cantilever among the values of total
frequencies (see Figure 6).

With B,=0.01°, the first cantilever frequency preserves
its values for angular velocity values from 0 to 3 rad/s and
gives a rise to two other frequencies of .Qo=1 rad/s. One of
these frequencies follows a decreasing parabolic function
from w, = 1.28 Hz for Q=1 rad/s to w, = 0.2 Hz for 2,=8
rad/s. The other frequency with an increasing quasi linear
evolution of w, = 1.31 Hz for Q=1 rad/s to w, = 2.92 Hz
for Q=18 rad/s.

While ﬂ0=5°, the cantilever frequency follows two evo-
lutions, one constant and the other decreasing parabolic
function, identical to those obtained in ,Bo=0.01 °,

Referring to these results it can be said that, taking into
account aerodynamic forces in the dynamic modeling of a
helicopter blade in stationary flight, it revealed new vibration
frequencies, which are absent in the previous studies.

And one observes the presence of cantilever frequen-

cies, among the global frequencies of the system, for each
given value of angular speed.

Conclusion

The aerodynamic model presented in this work complete the
modeling by continuum approach of a rotating rotor blade
of a helicopter which supposed to be standing, carried out in
the previous works of Sylla and Barou (2008) and Sylla and
al (2008). The motion equations are elaborates when taking
into account the aerodynamic and gravity forces exerted on
a rotor blade of a helicopter in stationary flight.

The spectral development of the impedance matrix
showed the presence of the cantilever frequencies among
the obtained numerically global frequencies obtained, for
each angular speed value. The influence of the pitch and
twist angles on the elastic behavior of the rotor blade is also
observed.
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Appendix
Aerodynamic forces

The theory of irrotationnel and stationary plan flow of in-
compressible perfect fluid around an obstacle P. Germain,
P. Muller (1995) is used to model the aerodynamic forces
(Figure 7).

The cross section of the blade is considered as a circle
and the complex velocity of a fluid (in this case air) around
a circle is, P. Germain, P. Muller (1995) and Servera (2002):

I B”
C=V'(e'*"ﬁ'—£ )+
- ZE

here V*and 8" are respectively winds speed and incident
angle (relative to x, axis), I is the air circulation around the
circle of radius R,

T 1
2nz’

Any circle point was spotted by the complex number Z
such as:

Z = Rye!" with j* = —1 and 6" € [0; 27].

According to the Kutta-Juckosky condition, P. Germain,
P. Muller (1995) and Servera (2002), velocity to the trailing
edge (6°=0) should be finite, which implies:

[ = 4w R,V sin(f*).
Therefore the air velocity around the circle is:
NEll = v = 2V*(sin(8* — B*) + sin(B*)).

By applying Bernoulli theorem in the absence of fluid
volume forces, it comes;

P, — P, = 2p"V*%sin(2p")[sin(268") — 2sin(8°)];

where, Pe and PI are respectively the pressure exerted
by the air in extrados (8" € [0; ]} and in intrados (8" €
[%;2x]) of the cross section and p® is the air density. It is the
difference between these two pressures that arise aerody-
namic forces on a circular section (Figure 8).

They are defined as follows:

2"

Far = (Pl - H}CGS{H}H‘H

0
and
In L pnen 1
Fap = In (P, — P)sin(8")d6";

where F’at, F’ap are respectively the drag and lift aerody-
namic forces density (see Figure 8).

Moreover, in this study, we suppose that the incident ve-
locity of the air with respect to the blade is:

V=05l + 5%
Because the influence of motion parameters is neglect-

ed before the angular velocity ;. And, the incident angle
of the air with respect to axis (O, X3 ) is written as follows:

B = fy + B(t);

Where B, is the rigid incidence angle of the air with re-
spect to the axis (O, X3 ) and B(#) which represent the pitch
angle and the motion parameter. It leads to:
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Local motions of the rotor blade (OA)

The local motion of the rotor blade (OA) is governed by the
dynamics fundamental equations, Crellin and Janssens
(1983):

dF(s.t) =, = d:Rs0

T+pg+Pa_p o (a1.1)

dMist) | dX(s0) =

— e — = al.2
) F(s,t) =10 (a1.2)

where F ,H are respectively the force and torque ex-
erted into the rotor blade (OA), of components in frame (R):

F = (s, 0) + Fi(s): (s, ) + To(s)i Els, ) + T5(5)),
(a.2)

M = (my; 0;m,); (a.3)

Let's recall that X is the position vector of a material
point M of the rotor blade (04), given by formulas (16), pg
and .E'; which are respectively the gravity and aerodynamic
forces vectors exerted on the rotor blade. Formula (a.1.1)

becomes:
= 0
Fis,
d :i; t +pg + B, 0
4mRop" O (ly + 5)*(sin(26,) +

= pT'(M, t) (a.4)

+ 2fcos(2,))

i+ — s — 2007, — 03(r, + v + L)
=p i:n + 2!.15(1"‘1 + = Sﬂé} - ﬂ%rﬂ - ﬂﬁﬂﬂ + .57]
# + W+ s + Q3(l, + 5)8
One obtains components of the axial force vector:

T](S} =0

To(s) = T(s) = =3 PR3y + 5)? = (lo + ]
(a.5)

and

7y(5) = pa(s — D - 3nRop" B [(lg + 5)° = (ly + Isin(2B,)

One assumes Euler-Bernoulli beam for the rotor blade
(OA). So that

Fw v

m, = EIXF, m; = —E.fz 7 (a.6)

By derivating equation (a.1.2) with respect to the vari-
ables, one obtains:

diM(s, 1) +d2f:fs,:} .

AF dX(s,t) dF(s,0)
ds? ds? (s.6) + "

ds ds =

It results from the last equation combined with (a.2),
(a.3) and formulas (a.4), (a.6), the linearized equations of
the rotor blade (OA) local motion:

p (716 + (s, ) — s (6) — 2Q97p(£) — QF(r, () +
+(s,6) + Lo (D) — gB(©))

d*v(s,t) 0 (f ﬂU) o @7)

+EI -—(F=—
N ds\ ds

(i () + (s, t) = sii(t) = Q2(l, + 5)O(t) +g)
—8nRyp 0Ly + 5)*cos(2B,)B(t) —
— 4Ry p Q& (1, + 5)sin(2f,)

?ﬂﬁ):u

d*w(s,t)

[Table 2]; [Figures 9 and 10]
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Table 1. .Qo=0 rad/s, cantilever bending frequencies

Table 2. Values of @ the global frequency when Qv tends towards 0 rad/s

Figures

a,
—= (Hz) [0-340Hz]
2

1.2914
8.0993
22.6615

44,4075
73.4088
109.660

153.1616
2039134
261.9161

327.1677

Bp = 0,01°,-3,-5%,5"°10°

1077 rad/s 10~% rad/s 107° rad/s 107 * rad/s
1.29114448 1.29114448 1.29114448 1.29114448
5.09103942 8.09103942 8.09103942 5.09103942
226547114 22.6547114 226547114 226547114

e 44.4062186 444062186 44, 4062186 444062186
n 73.4062386 734062386 734062386 734062386
(Hz) 109659745 109.659745 109.659745 109659745

153.158781 153.158781 153.158781 153.158781
203.911303 203.911303 203.911303 203.911303
261.911343 261.911343 261.911343 261.847681
327.164869 327164869 327.164869 327.213611

¥

Fig. 1. Rotating blade (OA) scheme
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) 12
32 H
Y2
&
. ->
‘fl ¥
a) b)

¥, = cosiXy + siny, ¥, = cosfy, + sinfz,
¥y = —sinixy + cospyyz, = —sinfy; + cosfz;

Fig. 2. Bending of the blade (OA) in the local frame Fig. 3. Motions of the frames — a) (R,) and -b) (R,)
-+ ‘ -4 -
Z 3= 22
- 4 b
Y3
@
X3
X .
-+ J Vs
@
U P ‘8
Z X3
X

=& & . = = = & -
X3 = cOS@X, + singy, X = cosfix; —sinfz,
— = & = = . - =+
Vi = —singx; + cos@y,z = sinfix; + cosfz;

Fig. 4. Motions of the frames (R3) and (R)

0.01"

Globals Frequencies (Hz)

o 0 0 60 B0 100 120
Rotor angular welocity [rad/fs)

Fig. 5. Superposition of the first two
global frequencies at 0.01°
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oo 5®
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" 2 2 4
£ £
a cr
1 1
—a— ECF1
0 4+ t =4 =+ =+ 1] L B e i e
0 5 10 15 20 o 5 1] 15 20
rad/s rads
a) &}

Fig. 6. Behavior of the first cantilever frequency at -a) 0.01° and —b) 5°

r

T ity Pa

Fig. 7. A fluid flow around a circle

,—-f”"-_\

a cr

== BCF]

ﬂ‘}/’ \.__H_,/J:r Fa

Fig. 8. Forces exerted on a circular section

10°
120 o
.-:P‘AAJ
:_l:ilE mﬂ? ——
‘g B8O
:
a0
g & o o
= 0¥ MF
5 ——GF3
2 o d M
=
0 |
L] 0 40 &0 b 100 130
Rator angular welocity (rad/fs)

Fig. 9. Third global frequency at B_0= 10°
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12000

a cr a cF

== B(F2 e BCF T

15

rad/s rad/s
a) b}

Fig. 10. Behaviors at B,=0,01 -a) of the 2" cantilever modes -b) of the 7™ cantilever modes
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