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Abstract 

In this article we have described the methodology for teaching the algorithms of combinatorics which are often 

used when solving tasks of informatics. These are the economic types of tasks in which we need to select 

different objects, sort selected objects in some order and choose the best selection from all possible selections. 

The formulas of calculating number of such selections are known from mathematics, but in informatics we are 

interested not only in number, but also in selections themselves, which can be generated by special algorithms. 

In general, the number of such selections is quite large, so we need to use optimal algorithms to find the desired 

answer in real time. The essence of combinatoric objects is explained. It is shown how to find the desired object 

in optimal way. The samples and description of the corresponding algorithms are presented using the 

programming language C ++.  
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Introduction 

Without the algorithms of combinatorics, it would be 

impossible to solve many problems in informatics. It is 

one of the most powerful and well-known algorithmic 

tools, and therefore there are different algorithms that 

handle the same task. However, some of these 

algorithms are more difficult to understand, and some 

are relatively simple. That is why it is of great 

importance how we present it to beginner 

programmers while teaching. The essence, purpose 

and build methods of these algorithms need to be 

clearly and comprehensibly explained and the most 

understandable and effective algorithms must be 

selected. 

   As with all other sciences, the combinatorics 

also has its terminology and one of its notions is a  
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combinatorial object, also known as selection. 

When choosing an element of m from a different 

number of n elements we say they form a selection of 

m number of elements from n. Depending on whether 

you have order of elements in selection or if all 

elements of n are included in selection or only part of 

it , there are three types of sselection. These are: 

permutations, combinations, arrangements. 

The Methodology 
Permutations 
Selections, each of which is composed of n different 

elements that are in a certain order, is called 

permutations. It should be noted that the order of 
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elements in the permutation is important and all the n 

elements (m = n) are involved in the formation of it. 

The number of all different permutations drawn from n 

different elements is denoted by Pn. From 

mathematics is known the formula for calculating Pn: 

Pn=n!  

Example: How many six-digit numbers can be 

compiled by numbers: 1, 3, 4, 5, 7 and 9, if none of 

these digits are repeated in any number. 

Solution: The last digit of an even number must 

be even. Therefore, the last digit of each lookup can 

be just 4, since all the other digits are odd. Each of the 

remaining five digits can be placed on the remaining 

five places in any sequence. Therefore, number of 

possible permutations is: P5 = 5! = 120. 

Sometimes we are interested not only in finding 

the number of possible permutations but also in finding 

each of them. 

There are several algorithms for generating all 

possible permutations for n different elements. They 

mainly differ by the sequence of permutation 

acceptance (Cormen Thomas, Leiserson Charles, 

Rivest Ronald, Stein Clifford, 2009). 

We discuss the algorithm in which we are 

getting lexicographically sorted permutations. That 

means that for comparison of two permutations we 

compare elements with same indexes from left to right 

and the greater is the one in which the greater element 

was found first (for example S = (3, 5, 4, 6, 7 ) and L = 

(3, 5, 6, 4, 7), then S < L because S3 < L3). 

Let's consider the algorithm for n = 5, which we 

can then expand for any possible value of n. Then, for 

convenience, we will work not with the elements 

themselves, but with their indices (from 1 to n).  After 

identifying the indexes, the problem is no longer the 

issue of releasing the relevant elements according to 

these indexes (Mandaria, Pertakhia, Shioshvili, 2000). 

Let’s discuss the working principle of algorithm 

using example. Suppose you need to find all possible 

permutations of numbers 1, 2, 3, 4, 5. Because they 

are lexicographically sorted, the first one will be:         1, 

2, 3, 4, 5 and the last one is: 5, 4, 3, 2, 1. 

Let's assume that at some step of the work of 

algorithm we get the P, where P = (2, 3, 5, 4, 1) =    (p1, 

p2, p3, p4, p5). In order to determine the actual 

permutation of the next step, the following steps are 

required: 

Step 1: Let's consider this permutation from right to 

left until we find the first element in the array that will 

be less that the element on the right, and stop 

immediately as soon as we find that element. In our 

given replacement it will be element 3 < 5, or element 

in array on  index 1 (Indices are starting with 0). We 

will remember the index of this element (2, 3, 5, 4, 1); 

Step 2: Let’s consider the permutation from right to left 

again, until we find first element which will be greater 

than the element we’ve on our saved index. This will 

be an array element with index 3. We will remember 

the index of this element (2, 3, 5, 4, 1); 

Step 3: We will switch the found elements; 

Step 4: The part of the array, which is located at the 

right of the first element found, will be sorted by 

ascending order. Because this part is always sorted by 

descending order, their sorting by ascending order is 

not a problem - they can simply be reversed. The 

permutation which we get after it is the 

lexicographically next permutation.  Let’s note it as    Q 

= (q1, q2, q3, q4, q5).  

We have to save indices of the elements in P 

array. Let’s number elements from 1 to n. So, in the 

beginning we’ll have elements from 0 to n ordered by 
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ascending order in a way, that every element of the 

array will be equal to it’s index. 0th element is fictional. 

We will  use it to define when must the algorithm stops 

working. The generation of permutations will be 

finished when this element will become a number 

different from zero. 

Written in C++, our algorithm for generating 

permutations will look like this: 

cin >> n; 

for (i = 0; i <= n; i++) 

p[i] = i; 

while (p[0] == 0) 

{ 

for (i = 1; i <= n; i++) 

    cout << p[i]; 

    cout << endl; 

    j = n; 

    while (p[j-1] > p[j]) (1) 

    j--; 

    k = n; 

    while (p[j-1] > p[k]) 

    k--; 

    swap (p[j-1], p[k]); 

    for (i = j; i <= (n+j) / 2; i++) 

    swap (p[i], p[n-i+j]); 

} 
Combinations 

Selections which are different from each other 

by at least one element and each of which contains m 

elements (m ≤ n), which are chosen from n different 

elements, are called combinations of m elements from 

n elements. The order of elements in the combination 

is not a factor. 

The number of combinations of m elements 

from n is indicated with C(n,m) and it can be calculated 

with the following formula: 

C(n, m) = 
( )

!
! !
n

m n m−
(2) 

It must be mentioned, that 

C(n, m) = 
( )

!
! !
n

m n m−
= C(n, n-m) 

Example: In how many different ways we can 

choose groups of 4 people from 10 people? 

Solution: The number of such ways is 

combination of 4 elements from 10 and is equal to 

C(10, 4) = 
( )

10!
4! 10 4 !−

= 
7 *8*9*10
1* 2*3* 4

= 210 

When solving some problems of informatics we 

may need to calculate not only number of 

combinations, but find every one of them. We’ll provide 

an algorithm for finding all combinations of m elements 

from n below. Also, as in every permutation finding 

algorithm, we’ll work not with actual elements, but with 

their indices. 

When working with combinations, the order of 

elements is not a factor, so when calculating them it is 

handy to use increasing indexes of used elements 

which are used on current step (Their overall number 

is equal to m). We’ll have to save current combination 

in B array. Select the following configuration              (1, 

2, 3, … , m) as initial combination for which the 

following equation is correct: B[j] = j, where                   j 

= 1, 2, 3, … , m. 

  The combinations we’ll get will be 

lexicographically ordered, so last combination will be: 

(n – m + 1, n – m + 2, …, n - 1, n).  

For each element of last combination the 

following condition is right: B[j] = n – m + j. For all 

remaining combinations the condition will fail for at 

least one element. 

3



To generate next combination let’s find B[j] 

element with maximum j index for which the following 

condition is correct:   

B[j] < n – m + j 

Along with this we must consider current 

combination from right to left. After this we must 

increase B[j] element by 1 and for each k > j assign 

incremented element value to each (k-1) element:  B[k] 

= B[k-1] + 1. If such B[j] element does not exist, it 

means, that generation of combinations of m elements 

is finished (Kotov, Lapo, 2000). 

Written in C++, corresponding algorithm will look 

like this: 

cin >> n >> m; 

for (i = 1; i <= m; i++) 

b[i] = i;  

do 

{ 

    for (i = 1; i <= m; i++) 

    cout << b[i]; 

    cout << endl;  

    j = m; 

    while (j > 0 && b[j] >= n – m + j) (3) 

    j--; 

    if (j != 0) 

        { 

 b[j] = b[j] + 1; 

 for (k = j+1; k <= m; k++) 

 b[k] = b[k-1] + 1; 

        } 

} 

while (j != 0); 

Arrangements 

Selections which are different from each other in 

composition or in their order, each of which contains 

m elements (m≤n), which are chosen from n different 

elements are called arrangements of m elements from 

n elements. The order of the elements in the 

arrangement is a factor. 

Number of arrangements of m element from n is 

marked with  A(n, m). Let’s count it’s value, thus count 

in how many ways we can to pick and place m (which 

is picked from n ) number of elements in m number of 

different positions. On the first position we can place 

any element from n number of elements, on the 

second position we can place any element from the 

remaining (n-1) number of elements, on the third 

position we can place one from the remaining (n-2) 

elements and so on. On the second-to-last position by 

index (m-1) we can place any element from the 

remaining (n-(m-2)) elements and on the last position 

one from (n-(m-1)). Finally we’ll get:  

A(n, m) = n(n-1)(n-2)…(n-(m-2))(n-(m-1)) = 
( )

!
!

n
n m−

According to definition: 0! = 1. 

Example: How many seven-digit phone 

numbers are there in which none of the digits are 

repeated? 

Solution: This problem is based on finding all 

arrangements of 7 from 10. So, the number of such 

phone numbers is A(10,7) = 10*9*8*7*6*5*4 = 604 800 

Now let’s prove all combination formulas (2) 

mentioned above: C(n, m) method is used to select m 

number of elements from n number of different 

elements.  

m! is a number of permutations can be found in 

every found combination. So, m!*C(n,m) is the number 

of all possible arrangements of m elements from n. So: 
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A(n, m) = m! * C(n, m) 

At this point we can say, that number of all 

possible combinations of m elements from n is less 

than of all possible arrangements of m elements from 

n by m!. So: 

C(n, m) = 
( )

( , ) !
! ! !

A n m n
m m n m

=
−

In the case when it’s needed to find all 

arrangements of m elements from n, we can find all 

possible combinations of m elements from n by using 

the algorithm mentioned above (3) and for each of 

those combinations find all possible permutations also 

by using the algorithm mentioned above (1). Finally we 

will get all possible arrangements of m elements from 

n (Berov, Lapunov, Matiukhin,            Ponomarev, 

2000). 

Written in C++, corresponding algorithm will look like 

this: 

cin >> n >> m; 

for (i = 1; i <= m; i++) 

b[i] = i;  

do 

{ 

    permutations (m); 

    j = m; 

    while (j > 0 && b[j] >= n – m + j) 

        j--; 

        if (j != 0) 

 { 

   b[j] = b[j] + 1; 

   for (k = j + 1; k <= m; k++) 

   b[k] = b[k-1] + 1; 

 } 

} 

while (j != 0); 

void permutations(int l) (4) 

{ 

for (i = 0; i <= l; i++) 

    p[i] = i; 

while (p[0] == 0) 

{ 

    for (i = 1; i <= l; i++) 

      cout << b[p[i]]; 

      cout << endl; 

    j = l; 

    while (p[j-1] > p[j]) 

      j--; 

    k = l; 

    while (p[j-1] > p[k]) 

      k--; 

    swap (p[j-1], p[k]); 

    for (i = j; i <= (l+j) / 2; i++) 

    swap (p[i], p[l - i + j]); 

} 

Conclusion 

When using algorithms of combinatorics for solving 

problems it is of great importance to form the task in a 

right way, to see the combinatoric nature in it and to 

rightly define the combinatoric object. After this we 

must try to select the algorithm which will allow us to 

solve the problem and to output the solution in most 

convenient form using minimum computer resources 

(memory, time). It is very important to select the 

optimal algorithm and build it correctly. 
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