
The Methodology of Teaching Algorithms of Combinatorics: Permutations,
Combinations, Arrangements

George MANDARIA*

Abstract

In this article we have described the methodology for teaching the algorithms of combinatorics which are often

used when solving tasks of informatics. These are the economic types of tasks in which we need to select

different objects, sort selected objects in some order and choose the best selection from all possible selections.

The formulas of calculating number of such selections are known from mathematics, but in informatics we are

interested not only in number, but also in selections themselves, which can be generated by special algorithms.

In general, the number of such selections is quite large, so we need to use optimal algorithms to find the desired

answer in real time. The essence of combinatoric objects is explained. It is shown how to find the desired object

in optimal way. The samples and description of the corresponding algorithms are presented using the

programming language C ++.

Keywords: Combinatorics, Methodology, Permutations, Combinations, Arrangements, Combinatorial object,

Selections

Introduction

Without the algorithms of combinatorics, it would be

impossible to solve many problems in informatics. It is

one of the most powerful and well-known algorithmic

tools, and therefore there are different algorithms that

handle the same task. However, some of these

algorithms are more difficult to understand, and some

are relatively simple. That is why it is of great

importance how we present it to beginner

programmers while teaching. The essence, purpose

and build methods of these algorithms need to be

clearly and comprehensibly explained and the most

understandable and effective algorithms must be

selected.

 As with all other sciences, the combinatorics

also has its terminology and one of its notions is a

* Assoc. Prof., Dr. International Black Sea University, Faculty of Computer Technologies and Engineering, E-mail: gmandaria@ibsu.edu.ge

combinatorial object, also known as selection.

When choosing an element of m from a different

number of n elements we say they form a selection of

m number of elements from n. Depending on whether

you have order of elements in selection or if all

elements of n are included in selection or only part of

it , there are three types of sselection. These are:

permutations, combinations, arrangements.

The Methodology
Permutations
Selections, each of which is composed of n different

elements that are in a certain order, is called

permutations. It should be noted that the order of

1

elements in the permutation is important and all the n

elements (m = n) are involved in the formation of it.

The number of all different permutations drawn from n

different elements is denoted by Pn. From

mathematics is known the formula for calculating Pn:

Pn=n!

Example: How many six-digit numbers can be

compiled by numbers: 1, 3, 4, 5, 7 and 9, if none of

these digits are repeated in any number.

Solution: The last digit of an even number must

be even. Therefore, the last digit of each lookup can

be just 4, since all the other digits are odd. Each of the

remaining five digits can be placed on the remaining

five places in any sequence. Therefore, number of

possible permutations is: P5 = 5! = 120.

Sometimes we are interested not only in finding

the number of possible permutations but also in finding

each of them.

There are several algorithms for generating all

possible permutations for n different elements. They

mainly differ by the sequence of permutation

acceptance (Cormen Thomas, Leiserson Charles,

Rivest Ronald, Stein Clifford, 2009).

We discuss the algorithm in which we are

getting lexicographically sorted permutations. That

means that for comparison of two permutations we

compare elements with same indexes from left to right

and the greater is the one in which the greater element

was found first (for example S = (3, 5, 4, 6, 7) and L =

(3, 5, 6, 4, 7), then S < L because S3 < L3).

Let's consider the algorithm for n = 5, which we

can then expand for any possible value of n. Then, for

convenience, we will work not with the elements

themselves, but with their indices (from 1 to n). After

identifying the indexes, the problem is no longer the

issue of releasing the relevant elements according to

these indexes (Mandaria, Pertakhia, Shioshvili, 2000).

Let’s discuss the working principle of algorithm

using example. Suppose you need to find all possible

permutations of numbers 1, 2, 3, 4, 5. Because they

are lexicographically sorted, the first one will be: 1,

2, 3, 4, 5 and the last one is: 5, 4, 3, 2, 1.

Let's assume that at some step of the work of

algorithm we get the P, where P = (2, 3, 5, 4, 1) = (p1,

p2, p3, p4, p5). In order to determine the actual

permutation of the next step, the following steps are

required:

Step 1: Let's consider this permutation from right to

left until we find the first element in the array that will

be less that the element on the right, and stop

immediately as soon as we find that element. In our

given replacement it will be element 3 < 5, or element

in array on index 1 (Indices are starting with 0). We

will remember the index of this element (2, 3, 5, 4, 1);

Step 2: Let’s consider the permutation from right to left

again, until we find first element which will be greater

than the element we’ve on our saved index. This will

be an array element with index 3. We will remember

the index of this element (2, 3, 5, 4, 1);

Step 3: We will switch the found elements;

Step 4: The part of the array, which is located at the

right of the first element found, will be sorted by

ascending order. Because this part is always sorted by

descending order, their sorting by ascending order is

not a problem - they can simply be reversed. The

permutation which we get after it is the

lexicographically next permutation. Let’s note it as Q

= (q1, q2, q3, q4, q5).

We have to save indices of the elements in P

array. Let’s number elements from 1 to n. So, in the

beginning we’ll have elements from 0 to n ordered by

2

ascending order in a way, that every element of the

array will be equal to it’s index. 0th element is fictional.

We will use it to define when must the algorithm stops

working. The generation of permutations will be

finished when this element will become a number

different from zero.

Written in C++, our algorithm for generating

permutations will look like this:

cin >> n;

for (i = 0; i <= n; i++)

p[i] = i;

while (p[0] == 0)

{

for (i = 1; i <= n; i++)

 cout << p[i];

 cout << endl;

 j = n;

 while (p[j-1] > p[j]) (1)

 j--;

 k = n;

 while (p[j-1] > p[k])

 k--;

 swap (p[j-1], p[k]);

 for (i = j; i <= (n+j) / 2; i++)

 swap (p[i], p[n-i+j]);

}
Combinations

Selections which are different from each other

by at least one element and each of which contains m

elements (m ≤ n), which are chosen from n different

elements, are called combinations of m elements from

n elements. The order of elements in the combination

is not a factor.

The number of combinations of m elements

from n is indicated with C(n,m) and it can be calculated

with the following formula:

C(n, m) =
()

!
! !
n

m n m−
(2)

It must be mentioned, that

C(n, m) =
()

!
! !
n

m n m−
= C(n, n-m)

Example: In how many different ways we can

choose groups of 4 people from 10 people?

Solution: The number of such ways is

combination of 4 elements from 10 and is equal to

C(10, 4) =
()

10!
4! 10 4 !−

=
7 *8*9*10
1* 2*3* 4

= 210

When solving some problems of informatics we

may need to calculate not only number of

combinations, but find every one of them. We’ll provide

an algorithm for finding all combinations of m elements

from n below. Also, as in every permutation finding

algorithm, we’ll work not with actual elements, but with

their indices.

When working with combinations, the order of

elements is not a factor, so when calculating them it is

handy to use increasing indexes of used elements

which are used on current step (Their overall number

is equal to m). We’ll have to save current combination

in B array. Select the following configuration (1,

2, 3, … , m) as initial combination for which the

following equation is correct: B[j] = j, where j

= 1, 2, 3, … , m.

 The combinations we’ll get will be

lexicographically ordered, so last combination will be:

(n – m + 1, n – m + 2, …, n - 1, n).

For each element of last combination the

following condition is right: B[j] = n – m + j. For all

remaining combinations the condition will fail for at

least one element.

3

To generate next combination let’s find B[j]

element with maximum j index for which the following

condition is correct:

B[j] < n – m + j

Along with this we must consider current

combination from right to left. After this we must

increase B[j] element by 1 and for each k > j assign

incremented element value to each (k-1) element: B[k]

= B[k-1] + 1. If such B[j] element does not exist, it

means, that generation of combinations of m elements

is finished (Kotov, Lapo, 2000).

Written in C++, corresponding algorithm will look

like this:

cin >> n >> m;

for (i = 1; i <= m; i++)

b[i] = i;

do

{

 for (i = 1; i <= m; i++)

 cout << b[i];

 cout << endl;

 j = m;

 while (j > 0 && b[j] >= n – m + j) (3)

 j--;

 if (j != 0)

 {

 b[j] = b[j] + 1;

 for (k = j+1; k <= m; k++)

 b[k] = b[k-1] + 1;

 }

}

while (j != 0);

Arrangements

Selections which are different from each other in

composition or in their order, each of which contains

m elements (m≤n), which are chosen from n different

elements are called arrangements of m elements from

n elements. The order of the elements in the

arrangement is a factor.

Number of arrangements of m element from n is

marked with A(n, m). Let’s count it’s value, thus count

in how many ways we can to pick and place m (which

is picked from n) number of elements in m number of

different positions. On the first position we can place

any element from n number of elements, on the

second position we can place any element from the

remaining (n-1) number of elements, on the third

position we can place one from the remaining (n-2)

elements and so on. On the second-to-last position by

index (m-1) we can place any element from the

remaining (n-(m-2)) elements and on the last position

one from (n-(m-1)). Finally we’ll get:

A(n, m) = n(n-1)(n-2)…(n-(m-2))(n-(m-1)) =
()

!
!

n
n m−

According to definition: 0! = 1.

Example: How many seven-digit phone

numbers are there in which none of the digits are

repeated?

Solution: This problem is based on finding all

arrangements of 7 from 10. So, the number of such

phone numbers is A(10,7) = 10*9*8*7*6*5*4 = 604 800

Now let’s prove all combination formulas (2)

mentioned above: C(n, m) method is used to select m

number of elements from n number of different

elements.

m! is a number of permutations can be found in

every found combination. So, m!*C(n,m) is the number

of all possible arrangements of m elements from n. So:

4

A(n, m) = m! * C(n, m)

At this point we can say, that number of all

possible combinations of m elements from n is less

than of all possible arrangements of m elements from

n by m!. So:

C(n, m) =
()

(,) !
! ! !

A n m n
m m n m

=
−

In the case when it’s needed to find all

arrangements of m elements from n, we can find all

possible combinations of m elements from n by using

the algorithm mentioned above (3) and for each of

those combinations find all possible permutations also

by using the algorithm mentioned above (1). Finally we

will get all possible arrangements of m elements from

n (Berov, Lapunov, Matiukhin, Ponomarev,

2000).

Written in C++, corresponding algorithm will look like

this:

cin >> n >> m;

for (i = 1; i <= m; i++)

b[i] = i;

do

{

 permutations (m);

 j = m;

 while (j > 0 && b[j] >= n – m + j)

 j--;

 if (j != 0)

 {

 b[j] = b[j] + 1;

 for (k = j + 1; k <= m; k++)

 b[k] = b[k-1] + 1;

 }

}

while (j != 0);

void permutations(int l) (4)

{

for (i = 0; i <= l; i++)

 p[i] = i;

while (p[0] == 0)

{

 for (i = 1; i <= l; i++)

 cout << b[p[i]];

 cout << endl;

 j = l;

 while (p[j-1] > p[j])

 j--;

 k = l;

 while (p[j-1] > p[k])

 k--;

 swap (p[j-1], p[k]);

 for (i = j; i <= (l+j) / 2; i++)

 swap (p[i], p[l - i + j]);

}

Conclusion

When using algorithms of combinatorics for solving

problems it is of great importance to form the task in a

right way, to see the combinatoric nature in it and to

rightly define the combinatoric object. After this we

must try to select the algorithm which will allow us to

solve the problem and to output the solution in most

convenient form using minimum computer resources

(memory, time). It is very important to select the

optimal algorithm and build it correctly.

References

1. H. Cormen Thomas, E. Leiserson Charles, L.

Rivest Ronald, Stein Clifford. (2009). Introduction

5

to Algorithms (3rd Edition). Boston: Massachusetts

Institute of Technology.

2. V.M. Kotov, I.A. Lapo. (2000). Algorithmic

Methods. Minsk.

3. V.I. Berov, A.V. Lapunov, V.A. Matiukhin, A.E.

Ponomarev. (2000). Features of National Tasks in

Informatics. kirov.

4. G. Mandaria, B. Pertakhia, B Shioshvili. (2000).

Tasks in Informatics (Tasks, Solutions, Programs).

Tbilisi.

6

