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Abstract

Activities of daily living (ADLs) are a crucial aspect of human life, especially in remote health 

monitoring and fall detection. As smartphones have become an integral part of our daily routines, 

with their ability to perform complex calculations, connect to the internet, and incorporate 

various sensors, researchers have been inspired to explore human activity recognition systems. 

This paper focuses on accelerometer and gyroscope data from iOS-based smartphones. We 

developed a data collection app to record fall types (e.g., Falling Right, Falling Left) and fall-like 

activities (e.g., Sitting Fast, Jumping). Volunteers carried smartphones naturally in their pockets 

during experiments, presenting a challenge of noise but enhancing user comfort. We applied 

different Machine Learning algorithms (Decision Trees, Random Forest, Logistic Regression, 

k-Nearest Neighbor, XGBoost, LightGBM, and Neural Networks) to analyze the collected dataset. 

In contrast to typical studies, our approach replicated real-world smartphone usage. The paper 

presents and analyzes promising results from the study. Furthermore, we implemented the trained 

model as a real-time mobile application for potential users. This research illustrates the potential 

of smartphones in fall detection and opens the way for user-friendly solutions in remote health 

monitoring.

Keywords: Machine Learning, Fall Detection, Data Preprocessing, Data Classification, 

Smartphone Embedded Sensors.

Introduction

Human activity recognition (HAR) is a cru-
cial area in machine learning, particularly 
dedicated to the elderly, and plays a signif-
icant role in healthcare, remote monitoring, 
and surveillance [9]. Activity recognition is 
essential as it involves collecting data on 
people’s daily lives, which is further moni-

tored and analyzed by computing systems 
[4]. HAR is highly important in ML but is also 
complex, posing several challenges that 
need resolution.
There are various challenging issues based 
on different conditions, including sensor 
motion, sensor placement, cluttered back-
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grounds, and inherent variability in how 
activities are performed by different indi-
viduals, all of which must be addressed to 
achieve accurate and efficient recognition 
[7]. Preprocessing and selecting classifica-
tion techniques are crucial steps to obtain 
stable and satisfactory results.
One prominent area within HAR is fall de-
tection, as a significant portion of the world’s 
population consists of disabled and elderly 
individuals over 65 years old who live alone 
and require assistance and monitoring to 
prevent serious injuries. This necessitates 
the use of alerts and signals, which can 
be achieved, for instance, through sen-
sor-based devices or even smartphones, 
our everyday assistants.
Numerous published surveys on fall detec-
tion discuss various aspects of fall detection 
models. One of the most challenging as-
pects is distinguishing falls from daily living 
activities, which significantly impacts classi-
fication accuracy and prediction. Other con-
siderations include providing comfortable 
conditions for users; in some studies, it was 
found that tightly attaching sensors to the 
body can be uncomfortable for wearers [21].
In this paper, we focus on addressing some 
of the primary challenges in the field, such 
as achieving high accuracy in algorithms, 
reducing false alarms, and ensuring user 
acceptance. We address these issues 
through an experimental study that involves 
selecting specific types of falls and fall-like 
activities, choosing the right sensor-based 
device, positioning it correctly during data 
collection and monitoring, applying prepro-
cessing algorithms, and developing appro-
priate methods for building a learning mod-

el. This model is then used to analyze test 
data to determine the best classification and 
the optimal balance between training and 
testing data.

           Related Work

In the modern technology era, there are var-
ious possibilities for creating a fall detection 
system. We can categorize the majority of 
them into three types: device-based, ambi-
ance sensor-based, and vision-based.
Regarding wearable devices, they rely on 
acceleration since actual falls are charac-
terized by high accelerations. It should be 
noted that tri-axial accelerometers, such as 
those found in wearable sensors or smart-
phones, have reported promising results [6, 
11]. These devices have the advantage of 
being affordable and user-friendly [15].
Smartphones serve as effective tools for 
human activity recognition (HAR) and fall 
detection. The number of smartphone users 
worldwide has surpassed three billion and is 
expected to grow by several hundred million 
in the next few years [22]. Today’s world has 
demonstrated the importance and power of 
smartphones. They have the incredible ca-
pability to collect data and perform calcula-
tions using a combination of various sensors 
and powerful central processors, includ-
ing separate chips for processing machine 
learning tasks. Specifically, smartphones 
come equipped with an embedded Inertial 
Measurement Unit (IMU), including a triaxial 
accelerometer, triaxial gyroscope, proximi-
ty sensor, digital compass, and barometer. 
By utilizing these capabilities, we can effec-
tively detect various everyday activities and 
falls. Furthermore, smartphone capabilities 
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continue to increase each year with more 
RAM, CPU power, networking capabilities, 
and more. All of these aspects make smart-
phones the most convenient devices for de-
veloping fall detection systems [15].
Today, Android and iOS systems are essen-
tial in the mobile software environment, as 
they dominate about 99% of the market. [26]. 
In terms of fall detection systems, both plat-
forms provide high-quality sensor data that 
can be processed and evaluated by trained 
models. Many researchers conduct experi-
ments on fall detection using Android-based 
systems due to its open-source nature and 
minimal restrictions [8, 15]. In contrast, iOS-
based systems for fall detection have lim-
itations due to privacy restrictions, requiring 
specific permissions for background tasks 
[5]. iOS follows a more closed approach 
compared to Android, restricting hardware 
and software modifications. Despite these 
limitations, several authors have developed 
fall detection apps for iPhones. For instance, 
[3] presents apps to warn users of fall risks 
based on signal data, and [19] offers an iP-
hone app that analyzes sensor data for po-
tential falls. Hakim et al. [15] used Android 
and iOS systems with Matlab Mobile soft-
ware to implement four machine learning 
algorithms for fall detection. Their analysis 
showed that SVM achieved the highest ac-
curacy, predicting fall-like activities with 97% 
accuracy or better than other algorithms.

            Preliminaries

In this section, we address data preprocess-

ing and classification, which are the two pri-
mary components of constructing a Machine 
Learning (ML) model.

Data Preprocessing
In today’s world, a vast amount of raw or re-
al-world data is generated daily for various 
specific purposes [13]. In ML, we require 
this data to be transformed into knowledge 
using specialized techniques. However, 
data must first be made understandable for 
machines, necessitating preparation and 
processing. Data preprocessing involves 
determining which tools and techniques 
can be applied to data and how to apply 
them to achieve the promised benefits.
This work discusses several approaches to 
data processing, both in data mining during 
the ML process and specifically in Human 
Activity Recognition (HAR) for Fall Detec-
tion.
According to Han et al. [16], data prepro-
cessing techniques typically involve four 
main steps:

•	 Data Cleaning: Addressing dirty data 
with missing values, noise, and incon-
sistencies.

•	 Data Integration: Combining data into 
a consistent data store, such as data 
warehouses.

•	 Data Transformation: Shaping and for-
matting data appropriately.

•	 Data Reduction: Decreasing the vol-
ume of the dataset to reduce data size.

These major steps also encompass 
sub-techniques with various solutions de-
pending on the task, time, or approach. Dif-
ferent data preprocessing methods are also 
discussed in [1]. In their work, Garcıa et al. 
[13] consider Data Preprocessing both as 
a former and latter disciplines as given in 
Table 1:
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Table 1. Data Preprocessing Techniques

Former Disciplines Latter Disciplines
Data Transformation Feature Selection

Data Integration Instance Selection

Data Cleaning Instance Discretization

Data Normalization

During our research, we came across [24], 
which reviews machine learning with the 
scikit-learn library and Python, including 
tools for data preprocessing. Yuan et al. 
[27] detail techniques for processing sensor 
data to detect human activities in the context 
of Human Activity Recognition (HAR). 
They highlight two key steps for better 
classification results: handling noisy data 
with windowing techniques and performing 
feature engineering and model training. 
For more detailed information on these 
preprocessing methods and their specific 
applications, refer to the authors mentioned 
in [24]. It’s important to note that there is a 
variety of methodologies and tools available, 

each suited to different tasks and goals, with 
considerations in terms of speed, accuracy, 
and dataset size.

3.2. Data Classification

Data classification, which follows data 
preprocessing, involves constructing a 
classifier model for predicting class labels 
from categorical or numerical data. The 
order of these labels is not critical as 
they are discrete values. In our study, we 
employed various classification algorithms 
suitable for sensor-derived numerical data 
(see Table 2). 

Table 2. List of ML Algorithms used in the Study

Names of the Algorithms & their abbreviation
Decision Tree (DT) XGBoost

Random Forest (RF) LightGBM
Logistic regression (LR) Neural Networks (NN)

k-Nearest Neighbor (kNN)

The Decision Tree algorithm, for instance, 
generates new features by evaluating their 
value at each iteration. It employs a greedy 
search with predefined operators, starting 
with an empty dataset. The algorithm adds 
or removes attribute-value pairs based on 
evaluations of class entropy, model com-
plexity, or criteria like the Gini index (1) and 
Entropy (2) to calculate information gain and 

split nodes, where p(CI) is the probability of 
class in a node. 
             
                                                                                                                      (1)                         

                                                                 (2)
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Random Forest, a supervised learning al-
gorithm, is a valuable tool for data classi-
fication. It creates decision trees on data-
sets, makes predictions on each set, and 
returns the best or most popular class by 
aggregating the votes of these trees [16].
Logistic Regression, a classification algo-
rithm, is typically used for binary outputs 
where a sample feature belongs to one 
class or not. It’s based on the Sigmoid 
function, which forms an ‘S’-shaped curve 
when plotted. This classifier transforms 
values between 0 and 1, making decisions 
based on the calculated Sigmoid of the 
weighted features [17]. The Sigmoid func-
tion is given in formula (3):
  
                                                                                                                                                
The e denotes the exponential constant 
and has a value of approximately 2.71828.
The k-Nearest Neighbor (k-NN) Algorithm 
classifies instances within a dataset based 
on their proximity to other instances with 
similar properties [14]. It identifies the k 
nearest instances to the query instance 
and determines their class by finding the 
most frequent class label. Distance mea-
surements between sample points x and y 
can be calculated using methods like Eu-
clidean Distance (4).

XGBoost, or extreme gradient boosting, 
uses a gradient-boosting decision tree 
architecture. It constructs new models by 
predicting the errors of previous models 
and makes final predictions based on the 
collected information, aiming to minimize 

loss like the Gradient Descent framework 
[10].
LightGBM, another gradient-boosting ap-
proach, implements tree-based learning al-
gorithms and is known for its high compu-
tational speed. Unlike other tree algorithms 
that grow horizontally, LightGBM grows 
vertically or leaf-wise. It selects leaves with 
significant loss reduction, allowing it to lower 
loss more efficiently compared to level-wise 
algorithms [18].
PyTorch, an open-source machine learn-
ing library, is widely used in deep learning, 
artificial intelligence, computer vision, and 
natural language processing applications. 
It’s primarily a research-focused library that 
supports the construction of neural networks 
using the torch.nn package, making it appli-
cable to fall detection as well [23].
A typical neural network (NN) consists of 
interconnected neurons that produce se-
quences of real-valued activations. Input 
neurons are activated by sensors observing 
the environment, while other neurons re-
ceive activation through weighted connec-
tions from previously active neurons. The 
learning process, or the assignment of cred-
its, involves finding weights that enable the 

NN to exhibit the desired behavior [25], [11].

Experimental Study of Sensor Data for 
Fall Detection
This section focuses on constructing the 
experimental model for fall detection using 
sensor data. The experimental study encom-
passes data acquisition, data preprocessing 
(including data cleaning, integration, trans-
formation, and reduction), data classifica-
tion, and results demonstration. 
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Figure 1 illustrates the steps of the experimental model construction using preferred algo-
rithms.

Figure 1. Fall Detection Flowchart

Data Acquisition

In this work, data collection is performed 
using mobile embedded sensors, which are 
crucial sources in the data collection process 
[2]. These sensors are increasingly utilized in 
various applications as automated tools for 
data acquisition, facilitating decision-making 
processes. Sensor data is valuable for appli-
cations such as health monitoring, location 
tracking, activity recognition, and, notably, 
fall detection [12].

Experimental Setup
in our study, fall detection experiments we-
re conducted with the participation of seven 

healthy volunteers who provided full con-
sent before the study. The mean age of the 
volunteers was 25 years, with an average 
weight of 60 kg. During data collection, each 
subject was instructed to intentionally simu-
late falls and fall-like activities while carrying 
their iPhone in the right front pocket of their 
pants without any restrictions or tightness. 
They performed these actions on a 15 cm 
thick cushion/mat in a natural living environ-
ment. Each activity was timed, with a max-
imum duration of 10 seconds from start to 
end, and data was sampled at 20 Hz. The 
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falls and fall-like activities, along with their 
descriptions, are listed in Table 3, while Ta-

ble 4 provides a list of engineered features.

Table 3. List of Fall Activities

Fall Activity Reference Fall Description 
F1 Fall forward
F2 Fall backward
F3 Fall towards left
F4 Fall towards right
F5 Sitting fast
F6 Jumping

The experiments were conducted using a mobile 
application specifically developed for this 
study, which collected data and detected 

falls. Visual representations of the appli-
cation can be seen in Figures 2 and 3 below.

Table 4. List 
of Engineered 

Features

Features Description
1. x, y, z coordinates 6. Avg of x, y, z and angle values
2. x, y, z angles 7. x/y, y/x, x/z, z/x etc.
3. Magnitude of the vector 8. Deviation from avg x, y, z and avg angles

4. Magnitude of the derivative 9. 1
st

 order derivative in time axis for x, y, z 
values, angles and

5. Angles of the derivative values magnitude

                    

                     Figure 2. Screen of Recording Activities               Figure 3. Screen of Fall Detection 
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4.3 Results of Data Preprocessing and 
Classification
In this study, we used the Python program-
ming language for data preprocessing and 
classification, given its widespread use in 
data science. Python is open-source and 
offers valuable libraries like scikit-learn for 
scientific computing. We used scikit-learn, 
along with Pandas and Matplotlib, for data 
manipulation and visualization.
During our experiments, we collected accel-
erometer and gyroscope data in separate 
.csv files for each activity and user. These 
files were later merged into a single “com-
bined.csv” file. We cleaned the data by fill-
ing missing values with means and detect-

ing outliers using Isolation Forest. We also 
engineered new features like angles and 
magnitudes and evaluated our models using 
performance measures based on confusion 
matrices (Table 5).
We explored various machine learning algo-
rithms, and their performances are shown in 
Figure 4. For data validation, we employed 
the train/test split method with different ra-
tios (0.1, 0.15, and 0.2) from scikit-learn. 
The 0.2 ratio proved to be the best choice. 
The LGBM classifier demonstrated the high-
est performance, as seen in Figure 5, with 
its confusion matrix provided in Figure 6.

Table 5. Confusion Matrix-based Performance 

Measure  

Data Class Classified Positive Classified Negative
Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

P=(TP)+(FP) P=(FN)+(FP)

Figure 4. ML Algorithm Performances on the 
Experimental Data, test ratio=0.2

Figure 4. ML Algorithm Performances on the Experimental Data, test ratio=0.2
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Figure 5. Performance Evaluation: Score Matrix for TestSet from LGBM

Figure 6. Performance Evaluation: Confusion Matrix for LGBM

Conclusion

This work outlines the process of constructing 
a machine learning model for fall detection 
using sensor data analysis. This process 
involves three main stages: data acquisition, 
data preprocessing, and data classification.

The introduction discusses the significance 
of human activity recognition in daily life and 
highlights the challenges in the field. It is 
followed by a review of related work, which 
explores various methodologies employed 
in fall detection systems. Additionally, the 
use of smartphone capabilities for detecting 
abnormal activities, including falls, is 
discussed.

The related work section also includes a 
comparison between two major mobile 
operating systems, iOS and Android, 
with an emphasis on privacy issues and 
limitations. In the Preliminaries section, we 
delve into the two key components of the fall 
detection model: data preprocessing and 

classification.

This comprehensive study covers two main 
aspects. First, it discusses data preprocess-
ing steps, including data cleaning techniques 
for handling missing values and noisy data, 
data integration strategies, data transforma-
tion methods for normalization, and data re-
duction approaches for simplifying the mod-
el through dimensionality reduction.

Second, it explores various classification 
algorithms, such as Decision Tree (DT), 
Random Forest (RF), Logistic Regression 
(LR), k-Nearest Neighbor (kNN), XGBoost, 
LightGBM, and Artificial Neural Networks. 
These algorithms are discussed in terms of 
their characteristics and usage in the study.

The study involves the collection and analy-
sis of mobile sensor data from iOS-based de-
vices. During the experiments, accelerome-
ter and gyroscope data are collected using a 
custom iOS-based mobile application devel-
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oped for this project. The study focuses on 
four fall activities and two fall-like activities, 
employing data cleaning techniques such 
as Mean Value Imputation, Outlier Detec-
tion Algorithms, and RobustScaler. For data 
reduction, both Principal Component Analy-
sis (PCA) and Linear Discriminant Analysis 
(LDA) were tested, with LDA showing bet-
ter performance on our dataset. In terms of 
feature engineering, magnitude and angle 
features are selected for data observation. 
Among the classification algorithms applied 
in research, LightGBM emerges as the most 
effective choice. In future work, our focus 
will be on further refining and optimizing the 
model’s performance for even more accu-
rate fall detection.
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