
35

Journal of Technical Science & Technologies; ISSN: 2298-0032; e-ISSN:2346-8270; Volume 8, issue 1, 2024

Fall Detection System based on iOS Smartphone Sensors

Mariam Dedabrishvili

Affiliated Associated Professor Doctor, International Black Sea University

mdedabrishvili@ibsu.edu.ge

Natia Mamaiashvili

Ma, International Black Sea University

16200165@ibsu.edu.ge

Ioseb Matiashvili

 PhD student, International Black Sea University

imatiashvili3@gmail.com

Abstract

Activities of daily living (ADLs) are a crucial aspect of human life, especially in remote health

monitoring and fall detection. As smartphones have become an integral part of our daily routines,

with their ability to perform complex calculations, connect to the internet, and incorporate

various sensors, researchers have been inspired to explore human activity recognition systems.

This paper focuses on accelerometer and gyroscope data from iOS-based smartphones. We

developed a data collection app to record fall types (e.g., Falling Right, Falling Left) and fall-like

activities (e.g., Sitting Fast, Jumping). Volunteers carried smartphones naturally in their pockets

during experiments, presenting a challenge of noise but enhancing user comfort. We applied

different Machine Learning algorithms (Decision Trees, Random Forest, Logistic Regression,

k-Nearest Neighbor, XGBoost, LightGBM, and Neural Networks) to analyze the collected dataset.

In contrast to typical studies, our approach replicated real-world smartphone usage. The paper

presents and analyzes promising results from the study. Furthermore, we implemented the trained

model as a real-time mobile application for potential users. This research illustrates the potential

of smartphones in fall detection and opens the way for user-friendly solutions in remote health

monitoring.

Keywords: Machine Learning, Fall Detection, Data Preprocessing, Data Classification,

Smartphone Embedded Sensors.

Introduction

Human activity recognition (HAR) is a cru-
cial area in machine learning, particularly
dedicated to the elderly, and plays a signif-
icant role in healthcare, remote monitoring,
and surveillance [9]. Activity recognition is
essential as it involves collecting data on
people’s daily lives, which is further moni-

tored and analyzed by computing systems
[4]. HAR is highly important in ML but is also
complex, posing several challenges that
need resolution.
There are various challenging issues based
on different conditions, including sensor
motion, sensor placement, cluttered back-

Fall Detection System based on iOS Smartphone Sensors

36

Journal of Technical Science & Technologies; ISSN: 2298-0032; e-ISSN:2346-8270; Volume 8, issue 1, 2024

grounds, and inherent variability in how
activities are performed by different indi-
viduals, all of which must be addressed to
achieve accurate and efficient recognition
[7]. Preprocessing and selecting classifica-
tion techniques are crucial steps to obtain
stable and satisfactory results.
One prominent area within HAR is fall de-
tection, as a significant portion of the world’s
population consists of disabled and elderly
individuals over 65 years old who live alone
and require assistance and monitoring to
prevent serious injuries. This necessitates
the use of alerts and signals, which can
be achieved, for instance, through sen-
sor-based devices or even smartphones,
our everyday assistants.
Numerous published surveys on fall detec-
tion discuss various aspects of fall detection
models. One of the most challenging as-
pects is distinguishing falls from daily living
activities, which significantly impacts classi-
fication accuracy and prediction. Other con-
siderations include providing comfortable
conditions for users; in some studies, it was
found that tightly attaching sensors to the
body can be uncomfortable for wearers [21].
In this paper, we focus on addressing some
of the primary challenges in the field, such
as achieving high accuracy in algorithms,
reducing false alarms, and ensuring user
acceptance. We address these issues
through an experimental study that involves
selecting specific types of falls and fall-like
activities, choosing the right sensor-based
device, positioning it correctly during data
collection and monitoring, applying prepro-
cessing algorithms, and developing appro-
priate methods for building a learning mod-

el. This model is then used to analyze test
data to determine the best classification and
the optimal balance between training and
testing data.

 Related Work

In the modern technology era, there are var-
ious possibilities for creating a fall detection
system. We can categorize the majority of
them into three types: device-based, ambi-
ance sensor-based, and vision-based.
Regarding wearable devices, they rely on
acceleration since actual falls are charac-
terized by high accelerations. It should be
noted that tri-axial accelerometers, such as
those found in wearable sensors or smart-
phones, have reported promising results [6,
11]. These devices have the advantage of
being affordable and user-friendly [15].
Smartphones serve as effective tools for
human activity recognition (HAR) and fall
detection. The number of smartphone users
worldwide has surpassed three billion and is
expected to grow by several hundred million
in the next few years [22]. Today’s world has
demonstrated the importance and power of
smartphones. They have the incredible ca-
pability to collect data and perform calcula-
tions using a combination of various sensors
and powerful central processors, includ-
ing separate chips for processing machine
learning tasks. Specifically, smartphones
come equipped with an embedded Inertial
Measurement Unit (IMU), including a triaxial
accelerometer, triaxial gyroscope, proximi-
ty sensor, digital compass, and barometer.
By utilizing these capabilities, we can effec-
tively detect various everyday activities and
falls. Furthermore, smartphone capabilities

Fall Detection System based on iOS Smartphone Sensors

37

Journal of Technical Science & Technologies; ISSN: 2298-0032; e-ISSN:2346-8270; Volume 8, issue 1, 2024

continue to increase each year with more
RAM, CPU power, networking capabilities,
and more. All of these aspects make smart-
phones the most convenient devices for de-
veloping fall detection systems [15].
Today, Android and iOS systems are essen-
tial in the mobile software environment, as
they dominate about 99% of the market. [26].
In terms of fall detection systems, both plat-
forms provide high-quality sensor data that
can be processed and evaluated by trained
models. Many researchers conduct experi-
ments on fall detection using Android-based
systems due to its open-source nature and
minimal restrictions [8, 15]. In contrast, iOS-
based systems for fall detection have lim-
itations due to privacy restrictions, requiring
specific permissions for background tasks
[5]. iOS follows a more closed approach
compared to Android, restricting hardware
and software modifications. Despite these
limitations, several authors have developed
fall detection apps for iPhones. For instance,
[3] presents apps to warn users of fall risks
based on signal data, and [19] offers an iP-
hone app that analyzes sensor data for po-
tential falls. Hakim et al. [15] used Android
and iOS systems with Matlab Mobile soft-
ware to implement four machine learning
algorithms for fall detection. Their analysis
showed that SVM achieved the highest ac-
curacy, predicting fall-like activities with 97%
accuracy or better than other algorithms.

 Preliminaries

In this section, we address data preprocess-

ing and classification, which are the two pri-
mary components of constructing a Machine
Learning (ML) model.

Data Preprocessing
In today’s world, a vast amount of raw or re-
al-world data is generated daily for various
specific purposes [13]. In ML, we require
this data to be transformed into knowledge
using specialized techniques. However,
data must first be made understandable for
machines, necessitating preparation and
processing. Data preprocessing involves
determining which tools and techniques
can be applied to data and how to apply
them to achieve the promised benefits.
This work discusses several approaches to
data processing, both in data mining during
the ML process and specifically in Human
Activity Recognition (HAR) for Fall Detec-
tion.
According to Han et al. [16], data prepro-
cessing techniques typically involve four
main steps:

•	 Data Cleaning: Addressing dirty data
with missing values, noise, and incon-
sistencies.

•	 Data Integration: Combining data into
a consistent data store, such as data
warehouses.

•	 Data Transformation: Shaping and for-
matting data appropriately.

•	 Data Reduction: Decreasing the vol-
ume of the dataset to reduce data size.

These major steps also encompass
sub-techniques with various solutions de-
pending on the task, time, or approach. Dif-
ferent data preprocessing methods are also
discussed in [1]. In their work, Garcıa et al.
[13] consider Data Preprocessing both as
a former and latter disciplines as given in
Table 1:

Fall Detection System based on iOS Smartphone Sensors

38

Journal of Technical Science & Technologies; ISSN: 2298-0032; e-ISSN:2346-8270; Volume 8, issue 1, 2024

Table 1. Data Preprocessing Techniques

Former Disciplines Latter Disciplines
Data Transformation Feature Selection

Data Integration Instance Selection

Data Cleaning Instance Discretization

Data Normalization

During our research, we came across [24],
which reviews machine learning with the
scikit-learn library and Python, including
tools for data preprocessing. Yuan et al.
[27] detail techniques for processing sensor
data to detect human activities in the context
of Human Activity Recognition (HAR).
They highlight two key steps for better
classification results: handling noisy data
with windowing techniques and performing
feature engineering and model training.
For more detailed information on these
preprocessing methods and their specific
applications, refer to the authors mentioned
in [24]. It’s important to note that there is a
variety of methodologies and tools available,

each suited to different tasks and goals, with
considerations in terms of speed, accuracy,
and dataset size.

3.2. Data Classification

Data classification, which follows data
preprocessing, involves constructing a
classifier model for predicting class labels
from categorical or numerical data. The
order of these labels is not critical as
they are discrete values. In our study, we
employed various classification algorithms
suitable for sensor-derived numerical data
(see Table 2).

Table 2. List of ML Algorithms used in the Study

Names of the Algorithms & their abbreviation
Decision Tree (DT) XGBoost

Random Forest (RF) LightGBM
Logistic regression (LR) Neural Networks (NN)

k-Nearest Neighbor (kNN)

The Decision Tree algorithm, for instance,
generates new features by evaluating their
value at each iteration. It employs a greedy
search with predefined operators, starting
with an empty dataset. The algorithm adds
or removes attribute-value pairs based on
evaluations of class entropy, model com-
plexity, or criteria like the Gini index (1) and
Entropy (2) to calculate information gain and

split nodes, where p(CI) is the probability of
class in a node.

 (1)

 (2)

Fall Detection System based on iOS Smartphone Sensors

39

Journal of Technical Science & Technologies; ISSN: 2298-0032; e-ISSN:2346-8270; Volume 8, issue 1, 2024

Random Forest, a supervised learning al-
gorithm, is a valuable tool for data classi-
fication. It creates decision trees on data-
sets, makes predictions on each set, and
returns the best or most popular class by
aggregating the votes of these trees [16].
Logistic Regression, a classification algo-
rithm, is typically used for binary outputs
where a sample feature belongs to one
class or not. It’s based on the Sigmoid
function, which forms an ‘S’-shaped curve
when plotted. This classifier transforms
values between 0 and 1, making decisions
based on the calculated Sigmoid of the
weighted features [17]. The Sigmoid func-
tion is given in formula (3):

The e denotes the exponential constant
and has a value of approximately 2.71828.
The k-Nearest Neighbor (k-NN) Algorithm
classifies instances within a dataset based
on their proximity to other instances with
similar properties [14]. It identifies the k
nearest instances to the query instance
and determines their class by finding the
most frequent class label. Distance mea-
surements between sample points x and y
can be calculated using methods like Eu-
clidean Distance (4).

XGBoost, or extreme gradient boosting,
uses a gradient-boosting decision tree
architecture. It constructs new models by
predicting the errors of previous models
and makes final predictions based on the
collected information, aiming to minimize

loss like the Gradient Descent framework
[10].
LightGBM, another gradient-boosting ap-
proach, implements tree-based learning al-
gorithms and is known for its high compu-
tational speed. Unlike other tree algorithms
that grow horizontally, LightGBM grows
vertically or leaf-wise. It selects leaves with
significant loss reduction, allowing it to lower
loss more efficiently compared to level-wise
algorithms [18].
PyTorch, an open-source machine learn-
ing library, is widely used in deep learning,
artificial intelligence, computer vision, and
natural language processing applications.
It’s primarily a research-focused library that
supports the construction of neural networks
using the torch.nn package, making it appli-
cable to fall detection as well [23].
A typical neural network (NN) consists of
interconnected neurons that produce se-
quences of real-valued activations. Input
neurons are activated by sensors observing
the environment, while other neurons re-
ceive activation through weighted connec-
tions from previously active neurons. The
learning process, or the assignment of cred-
its, involves finding weights that enable the

NN to exhibit the desired behavior [25], [11].

Experimental Study of Sensor Data for
Fall Detection
This section focuses on constructing the
experimental model for fall detection using
sensor data. The experimental study encom-
passes data acquisition, data preprocessing
(including data cleaning, integration, trans-
formation, and reduction), data classifica-
tion, and results demonstration.

Fall Detection System based on iOS Smartphone Sensors

40

Journal of Technical Science & Technologies; ISSN: 2298-0032; e-ISSN:2346-8270; Volume 8, issue 1, 2024

Figure 1 illustrates the steps of the experimental model construction using preferred algo-
rithms.

Figure 1. Fall Detection Flowchart

Data Acquisition

In this work, data collection is performed
using mobile embedded sensors, which are
crucial sources in the data collection process
[2]. These sensors are increasingly utilized in
various applications as automated tools for
data acquisition, facilitating decision-making
processes. Sensor data is valuable for appli-
cations such as health monitoring, location
tracking, activity recognition, and, notably,
fall detection [12].

Experimental Setup
in our study, fall detection experiments we-
re conducted with the participation of seven

healthy volunteers who provided full con-
sent before the study. The mean age of the
volunteers was 25 years, with an average
weight of 60 kg. During data collection, each
subject was instructed to intentionally simu-
late falls and fall-like activities while carrying
their iPhone in the right front pocket of their
pants without any restrictions or tightness.
They performed these actions on a 15 cm
thick cushion/mat in a natural living environ-
ment. Each activity was timed, with a max-
imum duration of 10 seconds from start to
end, and data was sampled at 20 Hz. The

Fall Detection System based on iOS Smartphone Sensors

41

Journal of Technical Science & Technologies; ISSN: 2298-0032; e-ISSN:2346-8270; Volume 8, issue 1, 2024

falls and fall-like activities, along with their
descriptions, are listed in Table 3, while Ta-

ble 4 provides a list of engineered features.

Table 3. List of Fall Activities

Fall Activity Reference Fall Description
F1 Fall forward
F2 Fall backward
F3 Fall towards left
F4 Fall towards right
F5 Sitting fast
F6 Jumping

The experiments were conducted using a mobile
application specifically developed for this
study, which collected data and detected

falls. Visual representations of the appli-
cation can be seen in Figures 2 and 3 below.

Table 4. List
of Engineered

Features

Features Description
1. x, y, z coordinates 6. Avg of x, y, z and angle values
2. x, y, z angles 7. x/y, y/x, x/z, z/x etc.
3. Magnitude of the vector 8. Deviation from avg x, y, z and avg angles

4. Magnitude of the derivative 9. 1
st

 order derivative in time axis for x, y, z
values, angles and

5. Angles of the derivative values magnitude

 Figure 2. Screen of Recording Activities Figure 3. Screen of Fall Detection

Fall Detection System based on iOS Smartphone Sensors

42

Journal of Technical Science & Technologies; ISSN: 2298-0032; e-ISSN:2346-8270; Volume 8, issue 1, 2024

4.3 Results of Data Preprocessing and
Classification
In this study, we used the Python program-
ming language for data preprocessing and
classification, given its widespread use in
data science. Python is open-source and
offers valuable libraries like scikit-learn for
scientific computing. We used scikit-learn,
along with Pandas and Matplotlib, for data
manipulation and visualization.
During our experiments, we collected accel-
erometer and gyroscope data in separate
.csv files for each activity and user. These
files were later merged into a single “com-
bined.csv” file. We cleaned the data by fill-
ing missing values with means and detect-

ing outliers using Isolation Forest. We also
engineered new features like angles and
magnitudes and evaluated our models using
performance measures based on confusion
matrices (Table 5).
We explored various machine learning algo-
rithms, and their performances are shown in
Figure 4. For data validation, we employed
the train/test split method with different ra-
tios (0.1, 0.15, and 0.2) from scikit-learn.
The 0.2 ratio proved to be the best choice.
The LGBM classifier demonstrated the high-
est performance, as seen in Figure 5, with
its confusion matrix provided in Figure 6.

Table 5. Confusion Matrix-based Performance

Measure

Data Class Classified Positive Classified Negative
Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

P=(TP)+(FP) P=(FN)+(FP)

Figure 4. ML Algorithm Performances on the
Experimental Data, test ratio=0.2

Figure 4. ML Algorithm Performances on the Experimental Data, test ratio=0.2

Fall Detection System based on iOS Smartphone Sensors

43

Journal of Technical Science & Technologies; ISSN: 2298-0032; e-ISSN:2346-8270; Volume 8, issue 1, 2024

Figure 5. Performance Evaluation: Score Matrix for TestSet from LGBM

Figure 6. Performance Evaluation: Confusion Matrix for LGBM

Conclusion

This work outlines the process of constructing
a machine learning model for fall detection
using sensor data analysis. This process
involves three main stages: data acquisition,
data preprocessing, and data classification.

The introduction discusses the significance
of human activity recognition in daily life and
highlights the challenges in the field. It is
followed by a review of related work, which
explores various methodologies employed
in fall detection systems. Additionally, the
use of smartphone capabilities for detecting
abnormal activities, including falls, is
discussed.

The related work section also includes a
comparison between two major mobile
operating systems, iOS and Android,
with an emphasis on privacy issues and
limitations. In the Preliminaries section, we
delve into the two key components of the fall
detection model: data preprocessing and

classification.

This comprehensive study covers two main
aspects. First, it discusses data preprocess-
ing steps, including data cleaning techniques
for handling missing values and noisy data,
data integration strategies, data transforma-
tion methods for normalization, and data re-
duction approaches for simplifying the mod-
el through dimensionality reduction.

Second, it explores various classification
algorithms, such as Decision Tree (DT),
Random Forest (RF), Logistic Regression
(LR), k-Nearest Neighbor (kNN), XGBoost,
LightGBM, and Artificial Neural Networks.
These algorithms are discussed in terms of
their characteristics and usage in the study.

The study involves the collection and analy-
sis of mobile sensor data from iOS-based de-
vices. During the experiments, accelerome-
ter and gyroscope data are collected using a
custom iOS-based mobile application devel-

Fall Detection System based on iOS Smartphone Sensors

44

Journal of Technical Science & Technologies; ISSN: 2298-0032; e-ISSN:2346-8270; Volume 8, issue 1, 2024

oped for this project. The study focuses on
four fall activities and two fall-like activities,
employing data cleaning techniques such
as Mean Value Imputation, Outlier Detec-
tion Algorithms, and RobustScaler. For data
reduction, both Principal Component Analy-
sis (PCA) and Linear Discriminant Analysis
(LDA) were tested, with LDA showing bet-
ter performance on our dataset. In terms of
feature engineering, magnitude and angle
features are selected for data observation.
Among the classification algorithms applied
in research, LightGBM emerges as the most
effective choice. In future work, our focus
will be on further refining and optimizing the
model’s performance for even more accu-
rate fall detection.

References

Browne, D., Giering, M., Prestwich, S.
(2019). Deep learning human activity recog-
nition. In: AICS.

Fall Detection System based on iOS Smartphone Sensors

Dedabrishvili, M. (2020). Effective ways
to overcome classification limitations for
activities of daily livings (adls). 2020 IEEE 2nd
International Conference on System Analysis
and Intelligent Computing (SAIC) pp. 1–7.

Dedabrishvili, M., Dundua, B., Mamaiashvili,
N. (2021). Smartphone sensor-based fall
detection using machine learning algorithms.
In: IEA/AIE.

Garcıa, S., Ram´ırez-Gallego, S., Luengo, J.,
Ben´ıtez, J.M., Herrera, F. (2016). Big data
preprocessing: methods and prospects. Big
Data Analytics 1(1), 9.

 Gent, I.P., Jefferson, C., Kotthoff, L., Miguel,
I., Moore, N.C.A., Nightingale, P., Petrie, K.
(2010). Learning when to use lazy learning
in constraint solving. In: ECAI.

Kambria: (2019). Logistic Regression For
Machine Learning and Classification.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen,
W., Ma, W., Ye, Q., Liu, T. (2017). Lightgbm:
A highly efficient gradient boosting decision
tree. In: NIPS.

 Majumder, A.J., Zerin, I., Uddin, M., Ahamed,
S.I., Smith, R. (2013). smartprediction: a re-
al-time smartphone-based fall risk prediction
and prevention system. In: RACS.

Ntanasis, P., Pippa, E., Ö zdemir, A.T., Bar-
shan, B., Megalooikonomou, V. (2016). In-
vestigation of sensor placement for accurate
fall detection. In: MobiHealth.

 O’Dea, S.: Mobile Operating System Market
Share Worldwide, Mar 2020 - Mar 2021
(2021).

