
Journal of Technical Science & Technologies; ISSN: 2298-0032; e-ISSN:2346-8270; Volume 8, issue 2, 2024

36

Increasing Accessibility and Scalability of Student Services Using Microservice

Architecture: A Case Study on Developing a Timetable Service

Nino Beraia

Georgian technical university, Professor

n.beraia@gtu.ge

Oleg Smoliakov

Georgian technical university, 4-th year student

smoliakov.oleg23@gtu.ge

Andrei Bykov

Georgian technical university, 4-th year student

bikov.andrei24@gtu.ge

Abstract

This paper describes the development of a service for tracking the university schedule, implemented
using a microservice architecture with a chat-bot as the client interface. During the development process,
the needs of students and professors, as well as publicly available university data, were considered,
allowing for the selection of an optimal platform and the creation of an interactive chat-bot interface.

All stages of the project’s development are listed, starting from defining the main service objectives and
ending with configuration and testing. Information is also provided about the chosen technologies and
tools used during the development process, such as the Python and Java programming languages,
the BeautifulSoup and Requests libraries, the Cloud Native and Domain-Driven Design architectural
approaches, as well as containerization with Docker and orchestration with Kubernetes.

The service is designed to help students stay informed about upcoming classes and events by providing
information in an accessible and intuitive format. It serves as a convenient addition to traditional methods
of information delivery.

Keywords: Microservice Architecture, Chat-Bot, Information System

Introduction

In the context of the digital transformation
of the educational process, universities
integrate more technologies to enhance
students’ experience with educational
information. An important goal is to ensure
data accessibility and simplify interaction
with educational services in formats that are

convenient for students. University websites
remain the central element of the information
ecosystem, however, there is a growing
demand for additional tools, that can provide
new methods of interaction. The challenges
of modern educational services are:

1.	 division of responsibilities by decom-
posing the system into individual micro-
service components, simplifying work

Increasing Accessibility and Scalability of Student Services Using Microservice Architecture: A Case Study on Developing a Timetable Service

Journal of Technical Science & Technologies; ISSN: 2298-0032; e-ISSN:2346-8270; Volume 8, issue 2, 2024

37

1.	 limited access to information due to out-
dated or slow systems, which hinders
quick access to essential data;

2.	 low scalability, which prevents handling
a growing number of users during peak
periods, such as the beginning of a se-
mester or exam sessions;

3.	 lack of personalization, making it im-
possible to adapt resources to individ-
ual student needs, which directly affects
learning effectiveness;

4.	 low integration with other systems, cre-
ating a need for data duplication and
significantly complicating the manage-
ment of the educational process;

5.	 limited functionality in mobile versions,
causing inconvenience for students who
frequently use smartphones;

6.	 dependence on third-party develop-
ment, which delays timely updates and
adaptation to the university’s specific
needs.

The listed issues also affect commercial
development, where accessible solutions
have been found to enhance enterprise
efficiency. The education sector can
adopt these solutions for its own
services. One key approach in this area
is the creation of modular systems with a
microservice architecture, composed of
several independent but interconnected
components. This structure enables efficient
development and integration of systems
with each other. The main advantages of
this approach include:

1.	 division of responsibilities by decom-
posing the system into individual micro-
service components, simplifying work

on each one by reducing the scope of
requirements;

2.	 scalability, enabling easy identification
of the most heavily loaded nodes with-
in the system. Typically, the technology
supports deploying multiple instances to
distribute the load. Such horizontal scal-
ing is most effective when the system
is properly divided, with each service
instance consuming minimal resources;

3.	 flexibility, provided by microservices of-
fering maximum integration both with
each other and with other systems,
which enhances the ability to add new
features to the overall system. This ap-
proach also allows for the connection of
client interfaces of any format, whether
they be web, desktop, or mobile appli-
cations, or even chat-bots in messaging
platforms.

This paper examines the creation of a
microservice project for organizing class
schedules at the Georgian Technical
University and delivering them through a
chat-bot based on the Telegram messenger.
The choice of schedule management as
the service topic was driven by high user
demand for this functionality within the
current university system, as well as the
general need to stay updated on relevant
events, which is one of the most essential
functions of any educational system. The
choice of Telegram was based on surveys
of international students, for whom this
platform is more familiar and frequently
used.

The advantages of the chosen architecture

Increasing Accessibility and Scalability of Student Services Using Microservice Architecture: A Case Study on Developing a Timetable Service

Journal of Technical Science & Technologies; ISSN: 2298-0032; e-ISSN:2346-8270; Volume 8, issue 2, 2024

38

address the issues of similar systems:
individual components can be horizontally
scaled, which speeds up the system in
the most heavily loaded areas; a focus on
mobility is achieved without limiting the
system to mobile platforms; and new features
can be added by incorporating additional
components. This makes it possible to
create a chat-bot for another social network
(e.g., Facebook), a mobile application, or a
web interface, without requiring changes to
the already developed services.

The following stages were implemented in
the development of the service:

•	 defining the goals and objectives of the
service;

•	 analysis of the audience and platform
selection through studying the needs of
students and professors to determine
the most convenient and effective way
to deliver information;

•	 development of service components:
defining the structure and logic, integrat-
ing the service with the university sys-
tem to obtain up-to-date information on
class schedules and updates;

•	 development of the user interface: cre-
ating dialogue scenarios and defining
the communication flow with the user;

•	 configuration and testing of the service:
creating and configuring the service to
meet all tasks and functions, conduct-
ing testing for compliance with require-
ments, and correcting errors.

At the same time, flexibility is required in
building the system to enhance its reliability
and potential for development. Modern
software development standards allow for

the selection of available technologies that
can achieve the set goals:

●	 Python and Java were chosen as pro-
gramming languages, both proven in
microservice applications and ranked in
the top three on the TIOBE index as of
October 2024 [1];

●	 for efficient development in a micros-
ervice environment, the libraries Beau-
tifulSoup (for parsing), Requests and
Spring Web (for HTTP), and Aiogram
(for asynchronous interaction with Tele-
gram) were selected;

●	 modern development standards were
applied, including Cloud Native, Do-
main-Driven Design, API-First, and
asynchronous service interaction tech-
nologies;

●	 Kubernetes, a modern and proven tool,
was chosen for application orchestra-
tion;

●	 The project used Docker containeriza-
tion, a widely adopted technology in
modern development;

●	 For continuous integration and de-
ployment (CI/CD), GitHub Actions was
used, currently managing nearly 78% of
the source code market [2]. ArgoCD, a
growing tool for CD, was also utilized.

Increasing Accessibility and Scalability of Student Services Using Microservice Architecture: A Case Study on Developing a Timetable Service

Journal of Technical Science & Technologies; ISSN: 2298-0032; e-ISSN:2346-8270; Volume 8, issue 2, 2024

39

Development of Timetable Service

The primary functions that the service
should perform were initially defined during
the project design phase:

●	 Viewing the class schedule for a specific
day or week.

●	 Notifications about upcoming classes
and schedule changes.

●	 Search by subject or professor.
●	 Answers to frequently asked questions

about the schedule, professors, and
classrooms.

●	 Ability to contact an administrator in
case of issues or questions.

These functions cover the primary needs
of students, as noted in the questions and
requests from 2nd-4th year international
technical groups in Telegram chats.

To implement the microservice
architecture, the service was divided into
three components, each with specific
responsibilities:

●	 Parser: an independent module respon-
sible for scraping the university website
using web scraping technology. This
stateless service (does not store infor-
mation) runs a limited number of times
per day, stopping after successfully
sending data, which minimizes load on
the overall system

●	 Data Service: a microservice that pro-
cesses, stores, and manages academ-
ic data, such as schedules, information
about professors, and courses. It is the
only stateful service, running continu-
ously to manage database access and

data, and providing an interface with the
necessary contracts for other compo-
nents.

●	 Chat-bot: serves as the client interface,
enabling convenient student interaction
with the system via the popular messen-
ger, Telegram. The bot retrieves data
from the main service and presents it
to users in a user-friendly format. It also
operates continuously and is stateless.

Service interaction is managed via HTTP
using REST, allowing independent operation
in Docker containers. Kubernetes provides
orchestration, acting as a cluster for these
containers.

The path from source code to the
Kubernetes cluster is managed through
GitHub CI. Configured GitHub Actions build
a Docker image upon code push, which
ArgoCD deploys as a Docker container
in the Kubernetes cluster, ensuring zero
downtime – keeping the old version active
until the new one is fully operational. Multiple
service copies can be launched based on
configuration, distributing the load.

Integration with the university website is
managed via the Parser service, which
connects to the university server to check
for data updates. The Timetable Service
generates a new schedule and saves the
data in a PostgreSQL database, linking it
with existing static data (professors, rooms,
study programs). The generated schedule
is marked as the latest version. The
Telegram Bot service retrieves data only
when receiving a message in Telegram, by
sending requests to the Timetable Service.

Increasing Accessibility and Scalability of Student Services Using Microservice Architecture: A Case Study on Developing a Timetable Service

Journal of Technical Science & Technologies; ISSN: 2298-0032; e-ISSN:2346-8270; Volume 8, issue 2, 2024

40

Users can configure their preferred group,
ensuring that only relevant group data is
requested.

Figure 1 illustrates the development details
and operation of the automated system

for loading and processing data from the
university’s schedule page.

Fig. 1. Data Loading and Processing Diagram

As mentioned earlier, Argo CD was used for
application deployment in Kubernetes. This
tool makes it easy to deliver applications to
the cluster by scanning for changes in the
GitHub repository. When a new commit
is detected, Argo generates new artifacts
based on Kubernetes manifests.

Services and components are conveniently
separated into Argo CD “Applications,” each
with customizable update rules and its own
structure. Our setup includes several such
applications (see Fig. 2):

●	 commons: contains access keys (data-
base login and password, GitHub Pack-
ages access key);

●	 postgres: contains Kubernetes objects
for running the Postgres database;

●	 parser, timetable, tgbot: contain Ku-
bernetes objects for running the corre-
sponding services.

Running a single microservice in Kubernetes
may require multiple Kubernetes objects. To
create these objects, Kubernetes manifests
are written. Argo CD provides a clear view
of the hierarchy of the created objects. Real
examples are shown in Figures 3-5.

For the bot, manifests were written for
a Secret with the Telegram token, a
Deployment with deployment data, a
Service for network access to the bot Pod,
a ReplicaSet to manage replica count,
and finally, a Pod – the container with the
Python-based application.

Increasing Accessibility and Scalability of Student Services Using Microservice Architecture: A Case Study on Developing a Timetable Service

Journal of Technical Science & Technologies; ISSN: 2298-0032; e-ISSN:2346-8270; Volume 8, issue 2, 2024

41

Fig. 2. Argo CD applications in Kubernetes cluster

Fig. 3. Telegram Bot in Kubernetes cluster

The data parsing service has an interesting
delivery model to the cluster. Since it doesn’t
need to run continuously, a scheduled task,
CronJob, was set up. Periodically, a Job
object is created, which triggers a Pod
running the Python-based parser service.
Once the task is completed, the Pod finishes
its execution.

The chatbot’s user interface was built

using FSM (Finite State Machine). FSM-
based interaction provides an efficient way
to manage different application states and
functions. In this setup, the bot’s interface is
designed so that users can easily complete
the registration process and set up their
schedule, after which they gain immediate
access to both the weekly and the current
day’s schedules.

Fig. 4. Timetable service in Kubernetes cluster

Increasing Accessibility and Scalability of Student Services Using Microservice Architecture: A Case Study on Developing a Timetable Service

Journal of Technical Science & Technologies; ISSN: 2298-0032; e-ISSN:2346-8270; Volume 8, issue 2, 2024

42

Fig. 5. Parser service in Kubernetes cluster

Fig. 6. Registration process

Registration starts with the “start” command,
which opens a registration menu with three
main buttons (see Fig. 6):

●	 «Language» – allows choosing one of
the three languages used for instruction
at the university.

●	 «Help» – displays a text with a descrip-
tion of all available bot commands;

●	 «Schedule setup» – The setup process
includes several steps: selecting the lan-
guage of instruction, academic degree,
specialty, and group. Once completed,
the settings are saved, and the menu is
hidden. After registration, the bot enters
the “waiting state” (see Fig. 7), where
the user can choose between “Week
schedule” or “Today’s schedule.” At any
time, the user can re-register by sending
the “/start” command.

There are also additional commands:

●	 «language» reopens the language se-
lection menu;

●	 «help» displays a text guide with addi-
tional commands;

●	 «about» shows information about the
bot and the schedule, as well as contact
details for user support.

Increasing Accessibility and Scalability of Student Services Using Microservice Architecture: A Case Study on Developing a Timetable Service

Journal of Technical Science & Technologies; ISSN: 2298-0032; e-ISSN:2346-8270; Volume 8, issue 2, 2024

43

Fig. 7. The “waiting state” and an example of the schedule for the day are displayed

�This interface organization allows users
to intuitively interact with the bot, following
clearly defined steps, while FSM ensures

easy control over states and transitions
between them. An example of the generated
schedule is shown in Fig. 7. The parsing
and Telegram bot services are integrated

with the data service using the HTTP
protocol and RestAPI architecture. The
API-first approach allowed the interaction
specification to be written first using
OpenAPI, followed by parallel development
of different services based on the described
interface. Using a formalized specification
makes development and debugging easier.
For example, the Swag¬ger graphical
interface was used to view and execute the
API of the service generating or using the
OpenAPI specification.

For example, in Figure 8, the requests for
retrieving and creating courses, groups, and
classes are shown. The creation requests
are actively used by the parser service,
which adds data to the data service, while
the data retrieval requests are generated by
the chatbot service, which needs to display

the data to users.

Similarly, the bot provides an API for the
data service, allowing it to send notifications
to users, such as informing them about
changes in the schedule.

Thus, microservices written in different
languages freely exchange information.

Increasing Accessibility and Scalability of Student Services Using Microservice Architecture: A Case Study on Developing a Timetable Service

Journal of Technical Science & Technologies; ISSN: 2298-0032; e-ISSN:2346-8270; Volume 8, issue 2, 2024

44

Fig. 8. Graphical representation of Data Service API

Conclusion

The use of a microservices approach in
higher education services opens up great
opportunities to improve the quality and
accessibility of education. It enhances the
quality of systems by increasing flexibility
and modularity, speeds up development in
student teams, and ensures greater reliability
compared to traditional approaches.

The created system will undoubtedly be
of interest to those who value innovation,
modern technologies, and aim to improve
the educational process. The experience
of such development will be valuable
for future educational system projects in
student teams, serving as an example
of independent development of modular
systems.

In conclusion, the established process
allowed for quick deployment of changes to
the server, with new features being added
independently to the modules. This ensured
that access to the system was not restricted,
and users could continue using the bot at
any time.

At the end of the month, during which the
bot’s information was shared within a small
circle of students, the total number of users
reached 60, with 32 using it in the last week
at the time of this conclusion. At least half of
the users interacted with the bot at least once
a week throughout its operation, indicating
strong interest in the service, even without a
mass information distribution

In the future, there are plans to develop

Increasing Accessibility and Scalability of Student Services Using Microservice Architecture: A Case Study on Developing a Timetable Service

Journal of Technical Science & Technologies; ISSN: 2298-0032; e-ISSN:2346-8270; Volume 8, issue 2, 2024

45

other client parts, such as a web client
and chatbots for other social networks like
Facebook, to maximize audience reach.
The functionality of the system will also be
expanded, including features like the ability
to sign up for consultations with professors,
create custom schedules, and more. To
achieve this, the involvement of more
interested students is planned, who will
continue to develop the university system.

The implementation of such technologies
will undoubtedly help create a much more
attractive educational environment, fostering
the development of future generations. It will
assist students in receiving a higher quality
education, better handling academic tasks,
and gaining more practical experience,
which will positively impact their academic
performance and motivation to learn.

References

N. Beraia, L. Tokadze, I. Aptsiauri, M.
Shiukashvili. Prospects and problems of
using artificial intelligence in higher education.
10th International new york conference
on evolving trends in interdisciplinary
research & practices. Manhattan, New York
City, IKSAD Publications - 2024©, Issued:
24.06.2024, Proceeding book, 308-313 pp.
ISBN: 978-625-367-739-8

Beraia N., Shekunov A., Timofeev P.,
Tokadze L. On the issue of effective use of
information technologies in the adaptation
of foreign students and the optimization of
educational processes. Scientific discussion
(Praha, Czech Republic), Vol 1, No 82,
(2023), р. 32-36. ISSN 3041-4245; DOI:

10.5281/zenodo.10117504

TIOBE Index for October 2024 (accessed
21.10.2024). https://www.tiobe.com/tiobe-
index/

Market Share of Github (accessed
21.10.2024). https://6sense.com/tech/
source-code-management/github-market-
share#

Increasing Accessibility and Scalability of Student Services Using Microservice Architecture: A Case Study on Developing a Timetable Service

