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Spinor Representation of Spatial Rotation Group for Rigid Bodies

Vakhtang RODONAIA*

Abstract

The method of spinor representation of three-dimensional generalized rotations have been introduced. Relations between the pa-
rameters of the spinor representation of three-dimensional generalized rotations group and the coordinates of the initial and terminal 
points of rotation have been obtained. The simple relations between the elements of a three-dimensional orthogonal matrix of the basic 
representation and the Euler angles, on the one hand, and the coordinates of the initial and terminal points of rotation, on the other hand 
were derived.
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Introduction

It is well known from Euler’s theorem that the gen-
eral finite displacement of a rigid body, that  has one point 
fixed, can be represented as a rotation through a certain an-
gle about some straight line passing through the point [1]. 
The body requires three parameters for the description of 
its pose (orientation) relative to some datum. Thus a three 
component vector can represent a single finite angular dis-
placement about a fixed point in 3D.  This means that any 
two rotations of arbitrary magnitude about different axes 
can always be combined into a single rotation about some 
axis. 

 At first sight, it seems that we should be able to ex-
press a rotation as a vector which has a direction along the 
axis of rotation and a magnitude that is equal to the angle 
of rotation. Unfortunately, if we consider two such rotation 
vectors, θ1 and θ2, not only would the combined rotation θ 
be different from θ1 + θ2, but in general θ1 + θ2 ≠θ2 + θ1.It 
is clear that the result of applying the rotation in x first and 
then in y is different from the result obtained by rotating 
first in y and then in x. Therefore, it is clear that finite rota-
tions cannot be treated as vectors, since they do not satisfy 
simple vector operations such as the parallelogram vector 
addition law.

Many different approaches to represent a finite rota-
tion about an axis have been explored.

These include real orthogonal 3x3 matrices, Euler an-
gles, special unitary 2x2 matrices, unit quaternions. etc.[2].
The commonest representation of 3D rotations in the engi-
neering field is the real orthogonal 3x3matrix [2]. This has 
nine elements, of which only three are independent, and 
one relatively minor difficulty with this approach arises 
in trying to relate the nine matrix elements to the axis of 

rotation and the angle turned through. The following real 
orthogonal 3x3 matrix represents a rotation of a rigid body 
through an angle θ about a general line through the origin 
with direction cosines (l, m, n):

 

A rotation of a rigid body can be also uniquely defined 
by rotating the rigid body 3 times in succession about any 
3 non-planar directions. These rotation angles ,  and 
are called the Eulerian angles. The matrix of the rotation is:

where  and  are Euler angles.
Given the matrices with its nine elements, a relatively 

lengthy algebraic process is required to
Determine the direction cosines of the axis, the angle 

of rotation or Euler angles. Also, particularly in the field 
of kinematics, the result of compounding several (often 
many) matrices in succession involves large amount of 
computations. 

The basic problem arising in this context can be for-
mulated as follows: given two three-dimensional points     
x(x1, x2, x3) and y(y1,y2,y3), it is required to define the set of 
all possible transformations and centers of rotations which  
bring about the transformation of the point x to the point 
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y. It is obvious that this problem can be easily extended to 
the case where instead of two points we consider two fi-
nite sets of points   and    
i=1, 2,…m, which corresponds to the case of rotations of 
a rigid body. 

Statement of the Problem
 

Let L3 be a linear Euclidean space with orthonormal-
ized basis vectors e1, e2, e3. To each vector x=x1e1+ x2e2+x3e3  
of the space L3 we assign a traceless Hermitian matrix  

 ,                                (1)
whose elements are the so-called spinor components 

of the vector x. When we pass from the usual Euclidean 
components of the vector x to the spinor ones, we thereby 
identify the vector x with Hermitian functionals on the 
two-dimensional linear space С2 over the field of com-
plex numbers С.  Denote by L (С2) the set of all Hermitian 
functionals on С2 which is a linear three-dimensional space 
over the field of real numbers provided that  Pauli matrices 
are taken  as basic elements. Then for each matrix of form 
(1) we have the decomposition 

,                                               (2)
where

 
are Pauli matrices.

From decomposition (2) it follows that the set L(С2) 
is a linear three-dimensional space over the field of real 
numbers and thus it can be identified with L3. Note that to 
each basis vector of the two-dimensional space C2 we can 
assign the basis vectors  of the space L(С2) (and 
also the orthonormalized basis vectors  e1,e2,e3 due to the 
identification of L3 and L(С2)): each of the matrices  is 
represented as some linear combination of tensor products 
of basis vectors of the space C2 [3]. The foregoing reason-
ing implies that for any matrix , which is a matrix of 
transformation between two basis vectors of the space C2, 
there also exists a transformation matrix of the correspond-
ing orthonormalized basis vectors in the space L3. 

Proposition 1. The matrix of transformation of the basis 
vectors in C2 is unitary (3)

The problem can be now reformulated in terms of 
the spinor space С2:  Given two traceless matrices of                
Hermitian functionals

and ,  

it is required to define:

1) A set of unitary matrices   which sat-
isfy the equality 

 ;                                               (4)

2) One-dimensional subspaces which are invariant 
with respect to transformations represented by matrices C 
(i.e. a set of respective rotation centers). 

Note that since the transformation C is unitary, the 
vector norms defined by the determinants of matrices of 
the Hermitian functionals X and Y coincide and therefore 
(4) defines rotation.

From equality (4) we can obtain the following system 
of linear homogeneous equations with respect to the un-
known variables   and :

,                                               (5)
where    and  .
For arbitrary , a solution of (5) is given by 

 .                                               (6)
From (6) we have  

 and  

.   (7)
Using the unitarity of the matrix 
С , we can define either  

 or   Note that one of these param-
eters remains arbitrary. Thus (6) defines rotation for  
and .

The invariance of the rotation center Z (z1, z2, z3) with 
respect to the transformation C is written as a condition 

   whence we obtain  

, 
where  .
The latter formula leads to the system 

  
It is not difficult to verify that the determinant of this 

system considered for the unknown values z1, z2 and z3 is 
identically zero and therefore for given  and  

 and  there always exist nontriv-
ial solutions written in the form 

,                                  (8)
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where z3 is arbitrary. Equations (7) define the one-par-
ametric set of transformations Ct due to which (x1, x2, x3) 
changes to (y1, y2, y3) by means of rotation. If we choose 

 as a parameter, then to its each fixed value defining the 
unique transformation   we can assign the set of rota-
tion centers lying in the plane 

                    (9)
whose equation  is   readily obtained from  (8).
Thus, (7) together with the normalization condition 

define a generalized rotation transforming   (x1,x2,x3) to 
(y1,y2,y3) with respect to the set of centers which is defined 
by (9). 

Relations between Transformations in C2 and L3

We can establish the correspondence between the ele-

ments of the transformation matrix   in C2 

and the elements of the orthogonal real matrix of rotation 
A in L3. 

The matrix A is, by definition, the matrix of transfor-
mation between two orthonormalized basis vectors of the 
space L3 and its rows are decompositions of the new basis 
vectors in terms of the initial basis vectors. Hence due to 
the identification of the spaces L (С2) and L3 we have 

 ,                 (10)
Where  are the Pauli matrices corresponding to the 

initial basis,  are the Pauli matrices of the new basis, and    
 are the elements of the matrix A-1. 

Formula (10) can be written explicitly in the form of 
three matrix equalities

which readily yield the following expressions for cal-
culating the elements of the matrix A  by the elements of 
the matrix C: 

(11)

Expressions (11) enable us to calculate the element of 
the matrix A through the given coordinates of three points 
(initial, terminal and the center and which define rotation): 

On the other hand, taking into account that the matrix 

A can be written in the form [1]

(12)
 where  and  are Euler angles, 

it easily follows that expressions (11) enable us to define 
Euler angles as well

(13)
Thus, the spinor approach to the representation of ro-

tations of a three-dimensional space makes it possible not 
only to describe sets of possible representations of rota-
tions (which we call generalized rotations), but also to con-
sider matrices of real orthogonal rotations in L3 as particu-
lar cases of transformations in C, which leads to obtaining 
simple formulas for calculating elements of real orthogonal 
matrices and such important technical parameters as Euler 
angles. It is significant that all the literature explains how 
to rotate after the Euler angles are given. There is no clear 
explanation for calculating the Euler angles. The latter is 
very important problem in engineering, computer graphics 
and simulation. The method considered allows us to cal-
culate Euler angles in case when a general rotation angle 
between initial and final positions of rigid body is given 

The results obtained above it give possibility to cal-
culate easily Euler angles ensuring the turn of a point  

 into a point . If we assume that 
zero Euler angles  correspond to the initial 
point, then the control of rotation consists in changes in 
time of Euler angles  from initial      
values  to final ones  computed by 
the formulas (13). In a general form the control process 
can be presented as functions of change of Euler angles 

 that  should satisfy the following condi-
tions:

                 (14)
where  and  - initial and final moments of control 

process.
Based on  the above-said the  problem  of  determina-

tion  of control  functions  naturally fol-
lows,  to which  the given work is devoted.

It is necessary to point out that  the following: depend-
ences    have kinematical nature charac-
ter, as they do not allow  for  neither moments nor elasticity 
nor any other dynamic characteristics of process, therefore 
after their definition the  task of  synthesis of the dynamic 
adaptive control on the basis of these functions arises [3].  
This problem will be considered in the subsequent works.
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Conclusion

The obtained results permit to reduce actually three-
dimensional problem of spatial motion control to the one-
dimensional problem. The simple method to calculate such 
important technical parameters as Euler angles is proposed. 
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