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Spherical Spline Solution of the Heat Equation

Victoria BARAMIDZE*

Abstract

We consider a spline approximation to the solution of the heat equation on the unit sphere. The time derivative is approximated
by a backward divided difference resulting in an implicit method of order two. The differential equation on the sphere is solved
by means of spherical splines. Numerical experiments exhibit quadratic convergence for the time variable and at least quadratic
convergence with respect to the spacial variables. Spherical harmonics approximation is considered for the purpose of comparison
with splines.
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1. Introduction

Polynomial splines are becoming an increasingly popular
tool in approximating solutions of partial differential equa-
tions (PDE) ( Awanou et al. 2006; Awanou and Lai 2005;
Aziz et al. 2005; Dehghan and Lakestani 2007; Gardner et
al. 2007; Hu et al. 2007; Lai et al. 2002; Lai et al. 2003;
Lai et al. 2004; Lai and Wenston 2004, Speleers et al 2006).
Spherical homogeneous splines have demonstrated properties
analogous to bivariate splines (Alfeld et al. 1996; Baramidze
and Lai 2005; Baramidze et al. 2006; Neamtu and Schumaker
2004). Some work has been done in developing algorithms
for approximating solutions of spherical PDE in spherical
spline spaces as well (Baramidze and Lai 2006). We continue
work in this direction by demonstrating how spherical splines
can be employed in a numerical algorithm approximating a
solution of the heat equation on the unit sphere.

Consider the problem of heat distribution on the unit
sphere. The temperature u at any surface point v and time
t on [0,∞) satisfies the differential equation:

∂

∂t
u(v, t)−∆∗u(v, t) = f(v, t), (1)

subject to the initial condition

u(v, 0) = g(v).

Here ∆∗ is the Laplace–Beltrami operator, the spherical ana-
log of the Laplacian, defined on the unit sphere S2 by

∆∗u = [∆u0]|S2 .

The function u0(v) = u
(

v
|v|

)
is the constant homogeneous

extension of u to R3\{0}. We consider and compare per-
formance of two methods for obtaining an approximation of

the solution to the equation (1). Section 2 is devoted to the
development of the spherical harmonics expansion of the so-
lution. We estimate an L2 error bound for the approximation
of the solution by partial sums. While this development is not
new (Orzag 1974), we include it here for completeness and
convenience. In Section 3 we discuss the divided difference
approximation to the time derivative, and develop an iterative
algorithm based on spherical splines. Error estimates are dis-
cussed as well. Numerical experiments are described, and the
results are summarized in Section 4.

2. Spherical Harmonics

A classical tool available for solving problems on the unit
sphere is an orthonormal set of spherical harmonics. One
way of approximating a spherical function is expanding it in
a series of spherical harmonics and cutting off the tail of the
series. Since any L2 integrable function on the unit sphere
has a unique expansion and the series converges, the idea
seems very attractive. It is especially appealing in the con-
text of PDE involving the Laplace–Beltrami operator, since
the spherical harmonics are the eigenfunctions of the named
operator. Even though we are claiming several advantages of
spherical splines over spherical harmonics for the problem at
hand, the harmonics are very important in the error analysis of
the weak solutions (Baramidze and Lai 2006), and in certain
situations provide quick and accurate solutions.

Case 1. We begin by considering the heat distribution on
the unit sphere with no heat source

∂

∂t
w(v, t)−∆∗w(v, t) = 0. (2)

We seek a separable solution w ∈ C2(S2) × C1([0, T ]) of
the form

w(v, t) = υ(v)τ(t).
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The standard procedure leads to separated equations

∂

∂t
τ(t) = Kτ(t)

and
∆∗υ(v) = Kυ(v)

for some separation constant K . The first equation has solu-
tions of the form

τ(t) = CeKt

for any constant C . Solutions of the second equation are
spherical harmonics Yℓk, since they are eigenfunctions of
Laplace–Beltrami operator

∆∗Yℓk = −ℓ(ℓ+ 1)Yℓk, ℓ ∈ N ∪ {0}, k = 0, · · · , 2ℓ.

Therefore

υ(v) ∈ {Yℓk(v), ℓ ∈ N ∪ {0}, k = 0, · · · , 2ℓ},

and the separation constant K takes on values −ℓ(ℓ+1). We
have

w(v, t) = CYℓk(v)e
−ℓ(ℓ+1)t, C ∈ R,

ℓ ∈ N ∪ {0},
k = 0, · · · , 2ℓ.

Note that the function w(v, t) = CYℓk(v)e
−ℓ(ℓ+1)t solves

the homogeneous problem (2) for every C ∈ R, ℓ ∈ N ∪
{0}, k = 0, · · · , 2ℓ.

Lemma 1: A general solution of the homogeneous problem
(2) is

w(v, t) =

∞∑
ℓ=0

ℓ∑
k=−ℓ

CℓkYℓk(v)e
−ℓ(ℓ+1)t. (3)

Proof: The set {Yℓk, ℓ ≥ 0, k = 0, · · · , 2ℓ} forms an
L2(S2)-orthonormal system. A classical solution w(v, t) of
the problem (2) is continuous and bounded on S2 and thus has
a unique expansion in terms of spherical harmonics for every
fixed t, i.e.

w(v, t) =

∞∑
ℓ=0

ℓ∑
k=−ℓ

Cℓk(t)Yℓk(v),

where the coefficients Cℓk are square summable. Since
w(v, t) is differentiable with respect to t

∂

∂t
w(v, t) =

∞∑
ℓ=0

ℓ∑
k=−ℓ

∂

∂t
Cℓk(t)Yℓk(v).

Since ∆∗w(v, t) is defined for w(v, t) we have

∆∗w(v, t) =

∞∑
ℓ=0

ℓ∑
k=−ℓ

Cℓk(t)∆
∗Yℓk(v)

= −
∞∑
ℓ=0

ℓ∑
k=−ℓ

ℓ(ℓ+ 1)Cℓk(t)Yℓk(v).

Therefore (2) becomes

∞∑
ℓ=0

ℓ∑
k=−ℓ

(
∂

∂t
Cℓk(t) + ℓ(ℓ+ 1)Cℓk(t))Yℓk(v) = 0.

By the linear independence of spherical harmonics

∂

∂t
Cℓk(t) = −ℓ(ℓ+ 1)Cℓk(t)

for every ℓ, k. Therefore

Cℓk(t) = Cℓke
−ℓ(ℓ+1)t

and

w(v, t) =

∞∑
ℓ=0

ℓ∑
k=−ℓ

CℓkYℓk(v)e
−ℓ(ℓ+1)t

is a solution of (2).
Case 2. Consider now a problem with a time-

independent heat source

∂

∂t
u(v, t)−∆∗u(v, t) = f(v), (4)

subject to the initial condition

u(v, 0) = g(v). (5)

Differentiate (4) with respect to time and denote w = ∂
∂tu.

We obtain (2) which has solutions of the form (3). Then we
must have for u(v, t)

u(v, t) =

∫ ∞∑
ℓ=0

ℓ∑
k=−ℓ

CℓkYℓk(v)e
−ℓ(ℓ+1)tdt =

C00Y00t+

∞∑
ℓ=1

ℓ∑
k=−ℓ

Cℓk

−ℓ(ℓ+ 1)
Yℓk(v)e

−ℓ(ℓ+1)t +K(v)

for some function K(v) independent of time. The initial con-
dition (5) implies

∞∑
ℓ=1

ℓ∑
k=−ℓ

Cℓk

−ℓ(ℓ+ 1)
Yℓk(v) +K(v) = g(v),

and therefore we obtain

u(v, t) = C00Y00t

+

∞∑
ℓ=1

ℓ∑
k=−ℓ

Cℓk

ℓ(ℓ+ 1)
Yℓk(v)(1− e−ℓ(ℓ+1)t)

+ g(v),

where the coefficients Cℓk are still to be determined. Com-
puting time derivative of u(v, t) and ∆∗u

∂

∂t
u(v, t) = C00Y00 +

∞∑
ℓ=1

ℓ∑
k=−ℓ

CℓkYℓk(v)e
−ℓ(ℓ+1)t,
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∆∗u(v, t) = −
∞∑
ℓ=1

ℓ∑
k=−ℓ

CℓkYℓk(v)(1− e−ℓ(ℓ+1)t)

+ ∆∗g(v),

we get in (4)

f(v) =

∞∑
ℓ=0

ℓ∑
k=−ℓ

CℓkYℓk(v)−∆∗g(v).

Theorem 1: The time-independent heat source equation (4)
subject to the initial condition (5) with f +∆∗g ∈ L2(S2)
has a unique solution

u(v, t) = C00Y00t

+

∞∑
ℓ=1

ℓ∑
k=−ℓ

Cℓk

ℓ(ℓ+ 1)
Yℓk(v)(1− e−ℓ(ℓ+1)t)

+ g(v), (6)

with the coefficients Cℓk subject to

∞∑
ℓ=0

ℓ∑
k=−ℓ

CℓkYℓk(v) = f +∆∗g. (7)

Proof: Considering the above, we only need to show unique-
ness of the solution. If u1 and u2 both solve (4) subject to (5)
their difference w = u1 − u2 solves the homogeneous equa-
tion (2) subject to the zero initial conditions. By (3) and the
linear independence of spherical harmonics w = 0, and thus
u1 = u2.

Note that the coefficients Cℓk can be found by

Cℓk =

∫

S2

(f +∆∗g)Yℓkds.

Corollary 1: If f +∆∗g = K for a real number K , then

u(v, t) = (f(v) + ∆∗g(v))t+ g(v).

If f + ∆∗g has an infinite expansion (7), one can use a
finite sum to approximate f + ∆∗g. Let ϵ(N) denote the
L2 error in the approximation of f +∆∗g by the finite linear
combination of spherical harmonics Yℓk with 0 ≤ ℓ ≤ N .
Then the N -th partial sum uN calculated according to (6)
approximates the exact solution u(v, t) of (4) with

∥u− uN∥2L2 =

= ∥
∞∑

ℓ=N+1

ℓ∑
k=−ℓ

Cℓk(1− e−ℓ(ℓ+1)t)

ℓ(ℓ+ 1)
Yℓk∥2L2

=

∞∑
ℓ=N+1

ℓ∑
k=−ℓ

C2
ℓk(1− e−ℓ(ℓ+1)t)2

ℓ2(ℓ+ 1)2

≤
∞∑

ℓ=N+1

ℓ∑
k=−ℓ

C2
ℓk

(N + 1)2(N + 2)2

≤ 1

N4

∞∑
ℓ=N+1

ℓ∑
k=−ℓ

C2
ℓk =

ϵ(N)2

N4
.

Corollary 2: Suppose f+∆∗g ∈ L2(S2) is approximated
by the N -th partial sum with the L2 error ϵ(N), then the
solution u and its partial sum approximation uN satisfy

∥u− uN∥L2 ≤ ϵ(N)

N2
.

Case 3. In case of a time-dependent heat source we at-
tempt to find a solution of the form

u(v, t) =

∞∑
ℓ=0

ℓ∑
k=−ℓ

Cℓk(t)Yℓk(v).

Substituting u into the equation and using the expansion of f
as

f(v, t) =

∞∑
ℓ=0

ℓ∑
k=−ℓ

fℓk(t)Yℓk(v),

we get for the coefficients Cℓk(t) of u

∂

∂t
Cℓk(t) + ℓ(ℓ+ 1)Cℓk(t) = fℓk(t).

The nonhomogeneous linear first order ordinary differential
equation above has a solution

Cℓk(t) = e−ℓ(ℓ+1)t

(∫ t

0
eℓ(ℓ+1)τfℓk(τ)dτ + gℓk

)
,

where gℓk are the coefficients of the initial value function
u(v, 0) = g(v) in the series of spherical harmonics. Re-
calling that

fℓk(t) =

∫

S2

f(v, t)Yℓkds,

we finally get

Theorem 2: The coefficients in the spherical harmonics ex-
pansion of the solution u of (1) are defined by

Cℓk(t) = e−ℓ(ℓ+1)t×(∫

S2

(∫ t

0
eℓ(ℓ+1)τf(v, τ)dτ

)
Yℓkds+ gℓk

)
.(8)

To estimate the error in the approximation of u by its N -
th partial sum uN at some fixed moment of time t, we first
notice that, by the triangle inequality

∥u(t)− uN (t)∥L2 =

( ∞∑
ℓ=N+1

ℓ∑
k=−ℓ

C2
ℓk(t)

)1/2

≤

( ∞∑
ℓ=N+1

ℓ∑
k=−ℓ

(

∫ t

0
eℓ(ℓ+1)(τ−t)fℓk(τ)dτ)

2

)1/2

+

( ∞∑
ℓ=N+1

ℓ∑
k=−ℓ

g2ℓk

)1/2

.
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Consider the first term on the right. By Cauchy-Schwarz in-
equality

(

∫ t

0
eℓ(ℓ+1)(τ−t)fℓk(τ)dτ)

2

≤
∫ t

0
e2ℓ(ℓ+1)(τ−t)dτ

∫ t

0
f2
ℓk(τ)dτ.

Therefore

∞∑
ℓ=N+1

ℓ∑
k=−ℓ

(

∫ t

0
eℓ(ℓ+1)(τ−t)fℓk(τ)dτ)

2

≤
∞∑

ℓ=N+1

ℓ∑
k=−ℓ

1

2ℓ(ℓ+ 1)

∫ t

0
f2
ℓk(τ)dτ

≤ 1

2N2

∫ t

0

( ∞∑
ℓ=N+1

ℓ∑
k=−ℓ

f2
ℓk(τ)

)
dτ

≤ 1

2N2

∫ t

0

(
∥f(·, τ)− fN (·, τ)∥2L2

)
dτ

≤ t

2N2

(
max
τ∈[0,t]

∥f(·, τ)− fN (·, τ)∥L2

)2

.

We thus have the following

Corollary 3:

∥u− uN∥L2 ≤

≤
√

t/2

N

(
max
τ∈[0,t]

∥f(·, τ)− fN (·, τ)∥L2

)

+ ∥g − gN∥L2 , (9)

where fN and gN denote the N -th partial sum approxima-
tions of f and g respectively.

It is not difficult to see that

∥g − gN∥L2 ≤ 1

N s
∥g∥Hs ,

for an L2 integrable function in the Sobolev space Hs

equipped with the norm

∥g∥2Hs :=

∞∑
ℓ=0

ℓ∑
k=−ℓ

(1 + ℓ(ℓ+ 1))s|gℓk|2.

Therefore (9) implies rapid convergence for smooth spherical
functions.

We conclude this section with a recursive definition of an
orthonormal set of spherical harmonics as trivariate functions
in R3 based on the three-term recursion formula for Legendre
polynomials pℓ(z).

Initialize

p0 = 1,
p1 = z,
s1 = y,
c1 = x.

Define

Yℓ,0 =

√
2ℓ+ 1

4π
pℓ, ℓ = 0, 1

Y1,−1 =

√
3

4π
s1,

Y1,1 =

√
3

4π
c1.

For ℓ ≥ 2 define

pℓ =
1

ℓ
(pℓ−1z(2ℓ− 1)− (ℓ− 1)pℓ−2)

sℓ = s1cℓ−1 − sℓ−1c1
cℓ = c1cℓ−1 + s1sℓ−1

Yℓ,0 =

√
2ℓ+ 1

4π
pℓ.

For every such ℓ and k = 1, · · · , ℓ define

Yℓ,−k =

√
(2ℓ+ 1)(ℓ− k)!

2π(ℓ+ k)!
sk

d

dzk
pℓ,

Yℓ,k =

√
(2ℓ+ 1)(ℓ− k)!

2π(ℓ+ k)!
ck

d

dzk
pℓ.

3. Spherical Splines

In (Baramidze and Lai, 2006) we have shown how to use
spherical splines to solve equations of the form

−∆∗u+ ω2u = F (10)

on the unit sphere. We need the following lemma.

Lemma 2: Let u be the weak solution of (10) in H1(S2)
and let ū be the weak solution of

−∆∗u+ ω2u = F̄ .

Then

∥u− ū∥L2 ≤ 1

ω2
∥F − F̄∥L2 .

Proof: Since

−⟨∆∗u, υ⟩+ ω2⟨u, υ⟩ = ⟨F, υ⟩

and
−⟨∆∗ū, υ⟩+ ω2⟨ū, υ⟩ = ⟨F̄ , υ⟩

for every test function υ ∈ H1(S2), the difference of the last
two equations yelds

−⟨∆∗(u− ū), υ⟩+ ω2⟨u− ū, υ⟩ = ⟨F − F̄ , υ⟩.

Since u− ū ∈ H1(S2) we get in particular

−⟨∆∗(u−ū),u−ū⟩+ω2⟨u−ū,u−ū⟩ = ⟨F−F̄ ,u−ū⟩.

By equation (5) in (Baramidze and Lai, 2006)

⟨(−∆∗ + ω2)υ, υ⟩ = ∥υ∥2H1 + (ω2 − 1)∥υ∥2L2

for any υ ∈ H1, and therefore for υ = u− ū

∥υ∥2H1 + (ω2 − 1)∥υ∥2L2 = ⟨F − F̄ , υ⟩.
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By Lemma 2 (Baramidze and Lai, 2006)

∥υ∥L2 ≤ ∥υ∥H1 .

Thus

∥υ∥2L2 + (ω2 − 1)∥υ∥2L2 =
ω2∥υ∥2L2 ≤ ⟨F − F̄ , υ⟩ ≤ ∥F − F̄∥L2∥υ∥L2 .

The equation (10) is the result of a time domain discretiza-
tion in (1) by a divided difference. We employ the following
approximation of the time derivative of u(v, t):

∂u

∂t
(v, tk) =

3/2uk − 2uk−1 + 1/2uk−2

h
+O(h2),

where uk = u(v, tk). Then (1) becomes

−∆∗uk +
3

2h
uk = fk +

2

h
uk−1 −

1

2h
uk−2 +O(h2),

(11)
where fk = f(v, tk). Solving

−∆∗uk +
3

2h
uk = fk +

2

h
uk−1 −

1

2h
uk−2, (12)

for ūk, k = 2, ...N requires two previous values uk−1 and
uk−2. Since usually only one initial value u0 = u(v, 0) =
g(v) is available, we estimate u1 = u(v, h) using Taylor’s
expansion near 0. For notational simplicity we are skipping
the spacial variable. Also, let us assume that u, g and f are
sufficiently smooth. Then

u(h) = u(0) + ut(0)h+ utt(0)
h2

2
+O(h3)

= g + (f(0) + ∆∗u(0))h

+ (ft(0) + ∆∗ut(0))
h2

2
+O(h3)

= g + (f(0) + ∆∗g)h

+ (ft(0) + ∆∗f(0) + (∆∗)2g)
h2

2
+ O(h3). (13)

Note that using

ū1 = g + (f(0) + ∆∗g)h + (ft(0) + ∆∗f(0)

+ (∆∗)2g)
h2

2
(14)

in place of u1 in (11) does not affect the order of the defect at
the second step

d2(h) = (−∆∗u2 +
3

2h
u2)− (−∆∗ū2 +

3

2h
ū2)

=
2

h
(u1 − ū1) +O(h2) = O(h2). (15)

For further analysis, we estimate the local L2 error at
the k-th step as follows. Initially, u(v, 0) = g(v) and
u1 = ū1 + O(h3) according to (13) and (14). Let u2 solve
weakly (10) with F = f2 +

2
hu1 −

1
2hg + O(h2). Let ũ2

solve (10) with F̃ = f2 +
2
h ū1 −

1
2hg. By Lemma 2 with

ω2 = 3
2h , and since

F − F̃ =
2

h
(u1 − ū1) = O(h2),

we get

∥u2 − ũ2∥L2 ≤ 2h

3
∥O(h2)∥L2 = O(h3).

At the next step let u3 solve (10) weakly with F = f3 +
2
hu2 − 1

2hu1 + O(h2). Let ũ3 solve (10) with F̃ =

f3 +
2
h ũ2 − 1

2h ū1. Since

F − F̃ =
2

h
(u2 − ũ2)−

1

2h
(u1 − ū1)

we get

∥F−F̃∥L2 =
2

h
∥u2−ũ2∥L2+

1

2h
∥u1−ū1∥L2 = O(h2).

Therefore
∥u3 − ũ3∥L2 = O(h3)

as well. It is not too difficult to notice however that a con-
stant in O(h2) is accumulating proportionally to k. Making
an inductive argument we conclude that

Theorem 3: There exists a positive constant c depending on
smoothness of the solution u of (1) and k such that

∥uk − ũk∥L2 ≤ ckh3. (16)

If we were to consider the error at the end of a time inter-
val of length T , k = T

h makes the global error to be of order
O(h2).

To approximate the solution of the PDE (12) by spherical
splines we first partition the domain. Let ∆ be a triangulation
of the unit sphere based on vertices V where function val-
ues f(v, tk) are known at every time step. We assume that
the initial condition function values g(v) are given on V as
well. Let Sr

d(∆) denote the space of spherical homogeneous
Bernstein–Bezier splines of degree d and smoothness r on
∆. Let ũk denote the spline approximation of (12), and |∆|
denote the size of the largest triangle in ∆ (i.e. the diameter
of the smallest spherical cap subscribing the largest triangle).
By Theorem 4 (Baramidze and Lai, 2006)

∥ũk − ũk∥L2 ≤ ∥uk − ũk∥H1 ≤ C|∆|m−1,

for some C > 0 depending on the degree d of the spline
space, some triangulation parameters, h, and the smoothness
of u. The value of m depends on smoothness of u and is
at most d. Therefore for a sufficiently smooth function we
expect

∥ũk − ũk∥L2 ≤ C|∆|d−1 (17)
for all k ≥ 2. Putting together (16) and (17) we get

Theorem 4: The spherical spline approximation ũk to the
weak solution uk of the heat equation (1) at the k-th time
step satisfies

∥uk − ũk∥L2 ≤ C|∆|d−1 + ckh3. (18)
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Table 5. Ratios of error converge as 2d−1 when h is reduced by a factor of

2(d−1)/2.
d 3 4 5
∥u−ũ∥∞,∆1,h1

∥u−ũ∥∞,∆2,h2
13.8616 11.4119 31.7856

∥u−ũ∥∞,∆2,h2

∥u−ũ∥∞,∆3,h3
12.5933 8.6344 17.3641

∥u−ũ∥∞,∆3,h3

∥u−ũ∥∞,∆4,h4
4.5216 7.8117 16.0387

∥u−ũ∥∞,∆4,h4

∥u−ũ∥∞,∆5,h5
4.2808 7.9111 16.0998

Table 6. N -th partial sum approximation.

N maxt∈[0,1]
∥u−uN∥2

∥u∥2
Time, sec.

1 1.2671e− 1 543
2 2.0353e− 2 1211
3 2.5106e− 3 2363
4 2.5085e− 4 4557
5 2.1191e− 5 6120
6 1.5026e− 6 8825
7 9.3016e− 8 12481
8 5.1358e− 9 17578
9 2.7098e− 10 23715
10 1.7850e− 10 30583

Table 7. N -th partial sum approximation with least squares solution.

N maxt∈[0,1]
∥u−uN∥2

∥u∥2

1 1.2690e− 1
2 2.1505e− 2
3 4.0609e− 3
4 3.0063e− 4
5 1.2150e− 4

Table 8. Spherical splines versus spherical harmonics.
Time, Harmonics, Splines,
tk

∥uk−u5,k∥2

∥uk∥2

∥uk−ũk∥2

∥uk∥2

×e− 3 ×e− 3
0.1 8.40 2.35
0.2 11.7 0.74
0.3 15.2 0.48
0.4 18.8 0.36
0.5 22.1 0.29
0.6 26.1 0.28
0.7 29.9 0.20
0.8 33.9 0.18
0.9 40.0 0.16
1.0 44.1 0.14

Example 3: In this example we consider the problem

∂

∂t
u(v, t)−∆∗u(v, t) = ex(1 + t(2x− 1 + x2))

u(v, 0) = 0.

The exact solution is u(v, t) = tex. Note that since u is lin-
ear in time, the error in the approximation of u by the spline
ũ is due to the spline approximation only. We expect the er-
ror to behave as |∆|d−1. Let ∆1 be a triangulation of the
unit sphere as in Example 1. We obtain triangulations ∆i

from ∆i−1 by bisecting the edges of triangles and connect-
ing the midpoints. We apply the computational algorithm in
S1
d(∆i), i = 1, 2, 3, 4, 5, d = 3, 4, 5 on the time inter-

val [0, 1] with h = 0.1. The relative errors of the form

maxk{∥uk−ũk∥2

∥uk∥2
} are recorded in Table 2. The ratios of er-

ror as we refine triangulations are recorded in Table 3.
The ratios of error are much higher than the expected val-

ues of 4, 8 and 16, however our next example demonstrates
that our error estimates are correct.

Example 4: According to (18) to have the overall error of
order h2, we can keep |∆|d−1 proportional to h2. And alter-
natively to have the error of order |∆|d−1 we must keep h2

proportional to |∆|d−1. In general we would like to achieve

∥uk − ũk∥L2 ≤ C|∆|max{d−1,2},

or
∥uk − ũk∥L2 ≤ Chmax{d−1,2}.

If the size of the triangulation ∆i is roughly halved, as we
have done in the previous examples, the time step size h has
to be reduced by a factor of 2

d−1

2 .

The function u(v, t) = ex sin t solves the problem

∂

∂t
u(v, t)−∆∗u(v, t) = ex(cos t+ sin t(x2 + 2x− 1))

u(v, 0) = 0.

As in the previous example we find the spline approxima-
tion of u on four triangulations ∆i, i = 1, · · · , 5. We
use the spline spaces S1

d(∆i), d = 3, 4, 5 with time step
h1 = π/10 reduced as shown in the first column of Ta-
ble 4, and register the maximal absolute error evaluated over
30, 000 locations. Table 4 contains the absolute errors,
∥u − ũ∥∞,∆i,hi

, i = 1, · · · , 5 with respect to supremum
norm, for each degree. Table 5 contains the corresponding
ratios of error.

Example 5: We run several numerical experiments with
spherical harmonics. Consider the problem in Example 3. We
calculate the coefficients Cℓk(t) according to (8) for ℓ ≤ N
with N = 1, 2, · · · , 10. We use time step h = 0.1 to find
an approximation to the solution in the time interval [0, 1].
For each time step we calculate an ℓ2 norm of the error over
30,000 points on the unit sphere. The maximal relative error
values over [0, 1] are recorded in Table 6 together with the
time it takes the program to calculate the approximation. The
time increases cubically with N , and the error decays by a
factor of ≈ 10 with every increment of N (until it reaches
the level of integration tolerance).

In this example we assume that the functions f and g are
defined everywhere on the sphere, that is the integrals for
fℓk’s can be approximated very well. Naturally, numerical
integration algorithms have to be adaptive since as the degree
of harmonics increases their oscillation increases as well. The
coefficients fℓk and gℓk are found using Matlab’s numerical
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quadratures with tolerance 10−10. Spherical harmonics pro-
vide us with accurate solutions in a resonable time.

Now we consider another scenario, similar to the one
when we use spherical splines. Suppose the functions f and
g are only known at the discrete set of values, and if this
set is not very large then numerical integration for the co-
efficients of harmonics cannot be very accurate. The alter-
native is then to solve a system of linear equations of the
form

∑
ℓ,k gℓkYℓk(vi) = g(vi), i = 1, · · · ,M . The least

squares solution is practical and thus the cardinality of the
data set N keeps the highest degree of the harmonics N low
(N << ⌊

√
M⌋ − 1). This prevents us from arbitrarily im-

proving the accuracy of approximation (as we have in Table
6). Assume also that f(vi, t) can be sampled at any moment
of time, that is the integrals

∫ t

0
eℓ(ℓ+1)τfℓ,k(vi, τ)dτ (19)

can be evaluated numerically for every fixed vi, and this ap-
proximation does not contribute to the error. In the last trian-
gulation we use in Example 2, the number of data locations
is 1026. To keep our experiment similar we sample f and g
at the same locations for the spherical harmonics approxima-
tion. Past certain value, as the largest degree of the harmonics
used increases, the accuracy of the coefficients begins to suf-
fer. Moreover, at some point there is not enough information
to determine all of the coefficients, and a further increase of
the degree becomes useless. In Table 7 we record error values
similar to those in Table 6. As seen in the last rows there is
almost no improvement for N = 5, and the result is much
worse than what we have in Table 6.

Comparing the error to the spline results in Table 2 we
notice that for the same number of points (last row) all three
spline spaces produce more accurate solutions, and that to
achieve the same order of accuracy it is enough to use ∆3,
which is based on 66 vertices, for the splines of degree 4
and 5. Spherical spline approximation is taking considerably
longer time to approximate the solution, however it seems the
way to go when the data is limited.

Note here also, that the time stepping in our spherical
spline scheme does not require function evaluations anywhere
else but at the time nodes. For the time integrals in spherical
harmonic approximation the numerical integration certainly
requires more than just the nodal values. If these are not avail-
able the situation gets worse.

Spherical spline technique requires numerical integration
as well. However most of these integrals are independent of
f and t. It is possible to pre-compute the matrices involved
in the solution and use them for any number of functions as
long as the triangulation does not change.

Example 6: We conclude this section with an example that
involves a spatially discontinuous heat source. Consider the
problem

∂

∂t
u(v, t)−∆∗u(v, t) = f(v, t)

u(v, 0) = 0,

with

f(v, t) =

{
1, z < 0

−8t(1− 3z2) + 4z2 + 1, z ≥ 0.

The exact solution to the problem is

u(v, t) =

{
t, z < 0

t(4z2 + 1), z ≥ 0.

We approximate the solution to the problem using both spher-
ical harmonics and spherical splines. The values of f and g
are sampled at 1026 locations (as in Example 5). The co-
efficients for the spherical harmonic expansions of f and g
are calculated from the resulting linear system using the least
squares method. The highest degree of the harmonics used
is 5. We still assume that f(vi, t) can be sampled at any
moment of time, that is the integrals (19) can be evaluated
numerically for every fixed vi, and this approximation does
not contribute to the error. The relative error is recorded in
Table 8. In the same table we record the relative error in the
spherical spline approximation in S1

4(∆5) at every time step
tk = hk, k = 1, · · · , 10, h = 0.1. Note the drastic differ-
ence in the error, which is smaller for the splines sometimes
by a factor of hundreds.

Figure 2 depicts the exact solution and the two spherical
approximations at t = 1. Note that infinitely smooth spheri-
cal harmonics handle the discontinuity in the derivative of the
solution along the line z = 0 differently from splines.
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