
Journal of Technical Science and Technologies; ISSN 2298-0032

15

Security Modeling of Autonomic-Component Ensembles

Irakli RODONAIA*
Medhat MOUSA**
Vakhtang RODONAIA***

Abstract

Autonomic systems exhibit the ability of self-monitoring, self-repairing, and self-optimizing by constantly sensing themselves and tuning
their performance. The notions of autonomic components (ACs) and autonomic-component ensembles (ACEs) are considered in the paper. A lan-
guage for coordinating ensemble components (SCEL) is used to represent specificity of security issues in autonomic computing environment. To
reveal abnormal behavior of ACEs the information theory metric (in particular, Kullback –Leibler divergence) is proposed to use in the approach
described in the paper.

Keywords: Cloud computing, autonomic component, autonomic ensemble, formal modeling, security, information theory metrics

Introduction

The notions of autonomic components (ACs) and auto-
nomic-component ensembles (ACEs) (ASCENS,2010), (Roc-
co De Nicola et al, 2013) have been put forward as a means to
structure a system into well understood, independent and dis-
tributed building blocks that interact in specified ways. ACs
are entities with dedicated knowledge units and resources that
can cooperate while playing different roles. Awareness is made
possible by providing ACs with information about their own
state and behavior that can be stored in their knowledge reposi-
tories. These repositories also enable ACs to store and retrieve
information about their working environment, and to use it for
redirecting and adapting their behavior. Each AC is equipped
with an interface, consisting of a collection of attributes, such
as provided functionalities, spatial coordinates, group member-
ships, trust level, response time, etc.

Attributes are used by the ACs to dynamically organize
themselves into ACEs. Individual ACs not only can single out
communication partners by using their identities, but they can
also select partners by exploiting the attributes in the interfaces
of the individual ACs. Predicates over such attributes are used
to specify the targets of communication actions, thus provid-
ing a sort of attribute-based communication. In this way, the
formation rule of ACEs is endogenous to ACs: members of an
ensemble are connected by the interdependency relations de-
fined through predicates. An ACE is therefore not a rigid fixed
network but rather a highly dynamic structure where ACs’ link-
ages are dynamically established.

The proposed abstractions are the basis of SCEL (Software
Component Ensemble Language), a kernel language for pro-

gramming autonomic computing systems.
The syntax of SCEL is presented in Table 1. The basic cat-

egory of the syntax is that relative to PROCESSES that are
used to build up COMPONENTS that in turn are used to define
SYSTEMS. PROCESSES specify the flow of the ACTIONS
that can be performed. ACTIONS can have a TARGET to char-
acterize the other components that are involved in that action.

PROCESSES are the active computational units. Each pro-
cess is built up from the inert process nil via action prefixing
(a.P), nondeterministic choice (P1+P2), controlled composi-
tion (P1[P2]), process variable (X), and parameterized process
invocation (A(p)). The construct P1[P2] abstracts the vari-
ous forms of parallel composition commonly used in process
calculi. Process variables can support higher-order communi-
cation, namely the capability to exchange (the code of) a pro-
cess, and possibly execute it, by first adding an item contain-
ing the process to a knowledge repository and then retrieving/
withdrawing this item while binding the process to a process
variable. We assume that A ranges over a set of parameterized
process identifiers that are used in recursive process defini-
tions. We also assume that each process identifier A has a single

definition of the form A(f) P where all free variables in P
are contained in f and all occurrences of process identifiers in
P are within the scope of an action prefixing. and denote lists
of actual and formal parameters, respectively.

Processes can perform five different kinds of ACTIONS.
Actions get(T)@c, qry(T)@c and put(t)@c are used to man-
age shared knowledge repositories by with drawing/retrieving/
adding information items from/to the knowledge repository c.
These actions exploit templates T as patterns to select knowl-
edge items t in the repositories. They rely heavily on the used
knowledge repository and are implemented by invoking the
handling operations it provides. Action fresh (n) introduces a
scope restriction for the name n so that this name
is ensured to be different from any other name previously used.

Action new creates a new component .An
autonomic component is graphically depicted
in Figure 1 (next page).

* Prof., Faculty of Computer Technologies and Engineering, International Black Sea University, Tbilisi, Georgia. E-mail: irakli.rodonaia@ibsu.edu.ge
** Ph.D. student , Faculty of Computer Technologies and Engineering, International Black Sea University, Tbilisi, Georgia.
 E-mail: mmousa@ibsu.edu.ge
*** Lecturer, Faculty of Computer Technologies and Engineering, International Black Sea University, Tbilisi, Georgia. E-mail: vrodonaia@ibsu.edu.ge

Irakli RODONAIA, Medhat MOUSA, Vakhtang RODONAIA

16

Journal of Technical Science and Technologies; ISSN 2298-0032

• An interface publishing and making available struc-
tural and behavioral information about the component itself in
the form of attributes. Among them, attribute id is mandatory
and is bound to the name of the component. Notably, compo-
nent names are not required to be unique; this would allow us
to easily model replicated service components.

• A knowledge repository managing both application
data and awareness data, together with the specific handling
mechanism. The knowledge repository of a component stores
also the whole information provided by its interface, which
therefore can be dynamically manipulated by means of the
operations provided by the knowledge repositories’ handling
mechanisms

• A set of policies regulating the interaction between
the different internal parts of the component and the interaction
of the component with the others.

• A process P together with a set of process definitions
that can be dynamically activated. Some of the processes in
P perform local computation, while others may coordinate
processes interaction with the knowledge repository and deal
with theissues related to adaptation

Finally, SYSTEMS aggregate COMPONENTS through
the composition operator .

Access control is a fundamental mechanism for restrict-
ing what operations users can perform on protected resources.
Many models of access control have been defined in the litera-
ture. One of them is the Policy Based Access Control model
(NIST, 2009). In this model, a request to access a protected
resource is evaluated with respect to one or more policies that
define which requests are authorized. An authorization deci-

sion is based on attribute values required to allow access to a
resource according to policies stored in system’s components.
Component attributes are here used to describe the entities that
must be considered for authorization purposes. On this basis
the SACPL (SCEL Access Control Policy Language), a sim-
ple, yet expressive, language for defining access control poli-
cies and access requests, is considered (Rocco De Nicola et al,
2013)

Policies are hierarchically structured as trees. A policy is
either an atomic policy or a pair of simpler policies combined
through one of the decision combining operators p-o (permit
override) and d-o (deny override). An atomic policy is a pair
made of a decision and a target. The target defines the set of
access requests to which the policy applies. The decision, i.e.
permit or deny, is the effect returned when the policy is ‘appli-
cable’, namely the access request belongs to the target. Other-
wise, i.e. when a request does not belong to the policy’s target,
the policy is ‘not-applicable’, which in this simplified setting
has the same effect as deny. A target is either an atomic target
or a pair of simpler targets combined using the standard logic
operators and and or. An atomic target is a triple denoting the
application of a matching function to values from the request
and the policy, like e.g. greater-than(subject.skill; threshold –
object.dependability). Finally, Expressions are built from val-
ues and attributes through various operators. SACPL requests,
ranged over by ρ, are functions mapping names to elements and
are written as collections of pairs of the form (name; element).
A request’s element can be a knowledge item, a component’s
interface, the type of an action, etc. In its turn, an interface
provides a set of attributes characterizing the corresponding
component, which can be either the subject or the object of the
request. A typical example of request is as follows:

Here, the subject identified by the interface requires the
authorization to withdraw the item t from component .
For example, the request’s subject is obtained by calling
ρ (subject), which returns .

Autonomic computingis widely used in spatial-temporal
data analysis for online prediction of dengue fever outbreaks
(R. Buyya et al.,2009), the science cloud (P. Mayer et al., 2012),
real time collection and dissemination of personal health data
(ECG: electrocardiograms) to patients and health-care profes-
sionals (Suraj Pandey et al., 2012), etc.

 Figure 1: SCEL components

Figure 2: Functional description of the component
The operational and system semantics of SCEL is described
in detail in (Rocco De Nicola et al., 2013).

Figure 3: Cloud Platform

Security Modeling of Autonomic-Component Ensembles

17

Journal of Technical Science and Technologies; ISSN 2298-0032

Cloud computing in these different areas can be thought
of as a collection of desktops, servers, notebooks or virtual
machines running the Cloud Platform (CP). Each (virtual)
machine is running one instance of the Cloud Platform called
Cloud Platform instance (CPi).Each CPi is considered to be a
service component. Multiple CPs communicate over the Inter-
net (IP ptotocol), thus forming a cloud and within this cloud
one or more service component ensembles (Figure 3).

Each CPi has knowledge. The knowledge consist of what
the CPi knows about itself (properties set by developers), about
its infrastructure (CPU load, available memory), and about oth-
er CPis (acquired through the network). Since there is no global
coordinator, each CPi must build its own world view and act
upon the knowledge available. The CPi may acquire knowledge
about its infrastructure using an infrastructure sensing plug-in,
which provides information about static values such as proces-
sor speed, available memory, available disk space, number of
cores etc. and dynamic values such as currently used memory,
disk space, CPU load, characteristics of current traffic flowing
through the CPi,etc).

Each CPi has also a connectivity component which ena-
bles it to talk to other CPis over the network. The protocol fol-
lowed by these communications must enable CPis to find one
another and establish links, for example by manually entering
a network address or by a discovery mechanism. Furthermore,
CPis must be able to query others for knowledge and distribute
their own. Finally, the protocol must support exchange of data
and applications.

Each CPi is considered to be autonomic in the sense that
it may join and leave the cloud at will. The cloud is thus a
dynamic cloud and works without a central coordinator in a
peer-to-peer manner.

1. Statement of the problem

The following scenario is considered. A singleton applica-
tion currently runs on one of the VMs at Data Center 2 (VM7 in
Service Component Ensemble 2. This application runs alone
on its node and,since the application is a singleton, no addition-
al instances can be spawned. During the sessionthe application
experiences consistently high CPU load. This increase may be
caused either by legitimate traffic overload or by coordinated
attacks (DDOS) launched against the PaaS provider. The lat-
ter might be wrongly assumed to be legitimate requests and
resources would be scaled up to handle them. This would result
in an increase in the cost of running the application (because
provider will be charged by these extra resources) as well as a
waste of energy. Hence, it is necessary to distinguish between
these two cases, the earlier this distinction is made, the higher
is the degree of protection of the application from failure and
poor performance.To provide this protection, the following se-
curity measures are suggested. The traffic flows through the
node (CPi) has to be analyzed using Kolmogorov complexity
metrics (see later in the text). During the session the constant
monitoring of the metric (by the special probe implemented in
the separate module), along with measure of CPU load, is be-
ing executed. If the simultaneous increase of these two metrics
is registered at least in 3 successive time units, the conclusion
about the real treat of the DDOS attack must be drawn. As a
result, the application has to migrate from the CPi where it was
running to another CPi (which may belong to the same ensem-

ble or other ensemble). A new CPi must be found according
to some requirements: complexity level and CPU load must
be rather low, integrated hardware index (which includes such
indicators as processor speed, available memory, available disk
space, number of cores, etc) must correspond to the application
resource requirements (they are published in the interface of
the CPi where the application is running). If the required CPi is
found, the application has to migrate there as soon as possible
and stop its running on the “old” CPi.

We assume that, other than id, the interfaces provide
the attributes “KLDiv”, “CPULoad” and “Hardware” stores a
context information, updated by the underlying infrastructure
(usually, from the firewalls, gateways or special probes) and
are `sensed’ by the managed element.

The CPi where the application is running is the SCEL com-

ponent:
The autonomic manager AM is defined as follows:
AM PKLDivMonitor [PCPULoad]
PKLDivMonitorr qry(“KLDivLevel”, “high”) @ self.
get(“KLDivHigh”, false) @self.
put((“KLDivHigh”, true) @self.
qru(“KLDivLevel”,”low”)@self.
get(“KLDivHigh”,true)@self.
put(“KLDivHigh”,false)@self.PKLDivMonitor
PCPULoad qry(“CPUloadLevel”,“low”)@self.get

(“CPULow”, false) @self.
put((“CPULow”, true) @self. qru(“CPUloadLevel”,”
high”)@self.
get(“CPULow”,true)@self.
put(“CPULow”,false)@self. PCPULoad
PMigrateCP i qry(“required_functionality_id”, ?X)@ self.
 /* retrieving from the knowledge repository the process

implementing a required functionality id and bounding it to a
process variable X */

get(“required_functionality_id_args”, ?y,?z) @self.
qry(“CPiId”, ?c) @ Ω . /* searching an item c among

components belonging to the ensemble identified by predicate
Ω */

fresh(n). /* fresh name n is used for coordination pur-
poses */

put(“required_functionality_id_params”,n,y,z)@c /* stor-
ing actual parameters of theprocess to be executed in the
found component c : moving from VM7 to MV5 on fig.2 */

get(“required_functionality_id”, “terminated”,n) @self.
/* removing the process from the knowledge repository of ‘old’
CPi */

get(“required_functionality_id”, X) @self.nil
/* eliminating the process in ‘old’ CPi */
Here the predicate Ω is determined as follows:

Ω () = (. KLDivLevel=”low”) (∧ .CPU-
Load <75)

Irakli RODONAIA, Medhat MOUSA, Vakhtang RODONAIA

18

Journal of Technical Science and Technologies; ISSN 2298-0032

 ∧ (.Hardware>=5))
and is used for group-oriented communication in the action

qry(“CPiId”, ?c) @ Ω . This predicate defines the ensemble
of components which publish in their interfaces attributes “KL-
DivLevel”, “CPULoad” and” Hardware”along with relevant
values. We assume that these attributes are provided by the
interface of each component and obtain dynamically updated
values from corresponding probes (sensors) as a result of con-
stant monitoring (sensing) of the computing environment.

We assume also that the attribute “KLDivLevel” (Kullback-
Leibler divergence) gives an indication in the range [0:m] ,
m - some positive real number (see explanation below in the
text) of data flow through the ensemble, the attribute “CPU-
Load” – in the range [0:100], the attribute “Hardware” – in
the range [0:10]. In this context the meaning of the predicate
is as follows: find a component CPi (or components) where
the “ComplexityLevel” is low (i.e. less than 0.8), “CPULoad”
is less than 75 and integrated hardware index “Hardware” is
more than 5.

The process Ps executed by the managed element ME is:
Ps get (“required_functionality_id_params”,?id, ?y,

?z)@self.
get(“load”, ?l) @self.
get(“hardware”, ?h) @self.
put(“load”, (l+5))@self.
put(“hardware”, (h-10))@self.
Ps [X(id, y, z)] /* the new process (additionally to the

already running process Ps), having actual parameters id, y,
z,starts */

The policy in force at the component results from the
composition, by means of the

p-o (permit override) and d-o (deny override) operators,
of the following policies:

 deny; target:{} * deny all *
e permit ; target:{equal(subject: id; n) and *permit
 local qry*
 equal(object: id; n) and
 equal(action; qry) and
 equal(subject: KLDivLevel; level) and
 less-or-equal-than(CPULoad;
 treshold)}
 permit ; target:{equal(subject: id; n) and * permit
 remote qry *
 equal(object: id; m) and
 equal(action; qry) and
 equal(subject: KLDivLevel; level) and
 less-or-equal-than(CPULoad;
 treshold)}
 permit;target:{equal(subject:id;n) and * always
 permit local put *
 equal(object: id; n) and
 equal(action; put)}

 permit;target:{equal(subject:id;n) and *always

 permit remote put*
 equal(object: id; m) and
 equal(action; put) }
 deny;target:{equal(subject: id; n) and *always deny
 remote get *
 equal(object: id; m) and
 equal(action; get) }

2. Detection of DDoS Attack Using Kullback-Lei-
bler Divergence Metric.

In the approach to autonomous computing security and
anomaly detection, developed in the paper, the notions of
netflows, their informational-theoretical metrics and compo-
nents’ autonomic manager are essentially leveraged.

A network flow can be defined in many ways. In a gen-
eral sense, a flow is a series of packets with some attribute(s)
in common. Each packet that is forwarded within a router or
switch is examined for a set of IP packet attributes. These at-
tributes are the IP packet identity or fingerprint of the packet
and determine if the packet is unique or similar to other pack-
ets. All packets with the same source/destination IP address,
source/destination ports, protocol interface, and class of ser-
vice are grouped into a flow and then packets and bytes are
labeled. This methodology of fingerprinting or determining a
flow is scalable because a large amount of network information
is condensed into a database of netflow information called
the netflow cache (Introduction to Cisco IOS® NetFlow, 2012)

Figure 4: Netflow schema

A netflow-enabled device (netflow exporter: router or
switch) (see the fig.4) sends to the netflow collector single
flow as soon as the relative connection expires. This can hap-
pen when 1) when TCP connection reaches the end of the byte
stream (FIN flag orRST flag) are set; 2) when a flow is idle for
a specific timeout; 3) if a connection exceeds long live terms
(30 minutes by default). Packets captured by the netflow col-
lector are stored to a flow storage . As stated by (D. Vitali et al.,
2012), port and address IP distributions are highly correlated

in network traffic. For this reason, we only considered
source and destination IP.

Flows accumulated at the flow storage, are then subdivided
into component flows. That is, flows which have the compo-
nent’s IP address as a destination address are grouped and sent
to the corresponding component (more exactly, to the auto-
nomic manager of a component - these flows are marked with
blue arrows on the fig.5). After receiving their destined flows,

Security Modeling of Autonomic-Component Ensembles

19

Journal of Technical Science and Technologies; ISSN 2298-0032

the component’s autonomic manager can start the processing
in order to reveal the abnormal behavior of flows in accordance
with the following technique.

Figure 5: Interaction between netflow devices and autonomic
components

Information theory based metrics enable sophisticated
anomaly detections directly with the whole traffic that are dif-
ficult to provide with simpler metrics, like aggregated traffic
workload, number of packets or single host traffic. The Kull-

back-Leibler divergence equation (D. Vitali et al., 2012) is:
where the index i in front of the right part of the equation
stands to denote: ∑

i

A low DKLvalue means a high similarity in the two prob-
ability distributions, on the other hand, high divergence values
correspond to low similarity. Port and address IP distributions
are highly correlated in network traffic. For this reason we only
considered source and destination IP. Network flows are aggre-
gated into time blocks of a fixed size (1 minute by default). Let

 be the number of flows that cross the monitored network in
a time block. Let be the number of flows that have IPi as
source (or destination) address. We associate pi to the packet
distribution over a time block t and qi to the packet distribution
of the previous time block t −1:

The Kullback-Leibler divergence is computed as follows:
So if the DKL during 2 succesive time moments is near to

zero, it means that patterns of IP addresses (source or destina-
tion) in packets are the same or very close. It can be consid-
ered as DDoS (or DoS) attacks (depending on combination of
source od destination addresses patterns)

Figure 6: Kullback Leibler details on source IP address

On the fig.6 the plot for DDoS attack for some selected
time interval is shown. It is characterized by a large number
of attack sources. Altough the Kullback-Leiblet metric is pre-
dominantly close to zero (it means that the source and destina-
tion IP are the same during the specified time interval - this is
very suspicious from the anomal behaviourstandpoint), there
are numerous peaks in KUllback-Leibler metric’s value This
fact means that a great number of different IP source hosts are
being connected the the attack.

Once the autonomic manager detected the anomaly, it gen-
erates the relevant commands and sends them to the managed
element of the component (as it is described above in the sec-
tion “Statement of the problem”).

Conclusions

The following issues are considered in the paper:
• The notions of autonomic components (ACs) and autonomic-
component ensembles (ACEs)
• Basic constructions of the SCEL (Software Component En-
semble Language) and SACPL (SCEL Access Control Policy
Language) - Behaviors, Knowledge and Aggregations, accord-
ing to specific Policies.
• A scenario of migrating of VM in condition of the DDOS
threat
• An approach of detection of DDOS attack using Kullback-
Leibler divergence metric

References

[1] ASCENS, P.: http://www.ascens-ist.eu/, (2010)

[2] Rocco De Nicola, Michele Loreti, Rosario Pugliese, Franc-
esco Tiezzi (2013). “SCEL - a Language for Autonomic Com-
puting”. ASCENS project , Technical report, pp.10-38

[3] NIST: A survey of access control models, (2009), from
http://csrc.nist.gov/news_events/ privilege-management-work-

Irakli RODONAIA, Medhat MOUSA, Vakhtang RODONAIA

20

Journal of Technical Science and Technologies; ISSN 2298-0032

shop/PvM-Model-Survey-Aug26-2009.pdf
[4] R. Buyya, R.N. Calheiros1, Xiaorong Li. (2009), “Auto-
nomic Cloud Computing: Open Challenges and Architec-
tural Elements”, Cloud Computing and Distributed Systems
(CLOUDS) Laboratory Department of Computing and In-
formation Systems The University of Melbourne, Australia,
pp. 1-20

[5] P. Mayer, C. Kroiss, J.V. (June 2012): Specification: The
Science Cloud Case Study. Overview and Scenarios. Technical
Report, pp.1-42

[6] Suraj Pandey, William Voorsluys, Sheng Niu, Ahsan Khan-
doker, Rajkumar Buyya. (2012),: An autonomic cloud environ-
ment for hosting ECG data analysis services. Future Genera-
tion Computer Systems 28 pp.147-154, Elsevier

[7] Introduction to Cisco IOS® NetFlow, 2012, from http://
www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/
ps6555/ps6601/prod_case_study0900aecd80311fc2.pdf

[8] D.Vitali, A.Villani, A.Spognardi, R.Battistoni, L.Mancini,
A. Villani, A. Spognardi, R. Battistoni1 and L. V. Mancini1
(2012), ”DDoS Detection with Information Theory Metrics
and Netflow (A real case), SECRYPT 2012-International Con-
ference on Security and Cryptography”, pp.172-181.

