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Abstract 

Autonomic systems exhibit the ability of self-monitoring, self-repairing, and self-optimizing by constantly sensing themselves and tuning 
their performance. The notions of autonomic components (ACs) and autonomic-component ensembles (ACEs) are considered in the paper. A lan-
guage for coordinating ensemble components (SCEL) is used to represent specificity of security issues in autonomic computing environment. To 
reveal abnormal behavior of ACEs the information theory metric (in particular,  Kullback –Leibler divergence) is proposed to use in the approach 
described in the paper.   
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Introduction
 

The notions of autonomic components (ACs) and auto-
nomic-component ensembles (ACEs) (ASCENS,2010), (Roc-
co De Nicola et al, 2013) have been put forward as a means to 
structure a system into well understood, independent and dis-
tributed building blocks that interact in specified ways.  ACs 
are entities with dedicated knowledge units and resources that 
can cooperate while playing different roles. Awareness is made 
possible by providing ACs with information about their own 
state and behavior that can be stored in their knowledge reposi-
tories. These repositories also enable ACs to store and retrieve 
information about their working environment, and to use it for 
redirecting and adapting their behavior. Each AC is equipped 
with an interface, consisting of a collection of attributes, such 
as provided functionalities, spatial coordinates, group member-
ships, trust level, response time, etc.

Attributes are used by the ACs to dynamically organize 
themselves into ACEs. Individual ACs not only can single out 
communication partners by using their identities, but they can 
also select partners by exploiting the attributes in the interfaces 
of the individual ACs. Predicates over such attributes are used 
to specify the targets of communication actions, thus provid-
ing a sort of attribute-based communication. In this way, the 
formation rule of ACEs is endogenous to ACs: members of an 
ensemble are connected by the interdependency relations de-
fined through predicates. An ACE is therefore not a rigid fixed 
network but rather a highly dynamic structure where ACs’ link-
ages are dynamically established.

The proposed abstractions are the basis of SCEL (Software 
Component Ensemble Language), a kernel language for pro-

gramming autonomic computing systems. 
The syntax of SCEL is presented in Table 1. The basic cat-

egory of the syntax is that relative to PROCESSES that are 
used to build up COMPONENTS that in turn are used to define 
SYSTEMS. PROCESSES specify the flow of the ACTIONS 
that can be performed. ACTIONS can have a TARGET to char-
acterize the other components that are involved in that action.

PROCESSES are the active computational units. Each pro-
cess is built up from the inert process nil via action prefixing 
(a.P), nondeterministic choice (P1+P2), controlled composi-
tion (P1[P2]), process variable (X), and parameterized process 
invocation (A( p  )). The construct P1[P2] abstracts the vari-
ous forms of parallel composition commonly used in process 
calculi. Process variables can support higher-order communi-
cation, namely the capability to exchange (the code of) a pro-
cess, and possibly execute it, by first adding an item contain-
ing the process to a knowledge repository and then retrieving/
withdrawing this item while binding the process to a process 
variable. We assume that A ranges over a set of parameterized 
process identifiers that are used in recursive process defini-
tions. We also assume that each process identifier A has a single 

definition of the form A( f ) P where all free variables in P 
are contained in  f and all occurrences of process identifiers in 
P are within the scope of an action prefixing.  and denote lists 
of actual and formal parameters, respectively.

Processes can perform five different kinds of ACTIONS. 
Actions get(T)@c, qry(T)@c and put(t)@c are used to man-
age shared knowledge repositories by with  drawing/retrieving/
adding information items from/to the knowledge repository c. 
These actions exploit templates T as patterns to select knowl-
edge items t in the repositories. They rely heavily on the used 
knowledge repository and are implemented by invoking the 
handling operations it provides. Action fresh (n) introduces a 
scope restriction for the name n so that this name 
is ensured to be different from any other name previously used. 

Action new creates a new component .An 
autonomic component  is    graphically depicted 
in Figure 1 (next page).

* Prof., Faculty of Computer Technologies and Engineering, International Black Sea University, Tbilisi, Georgia. E-mail: irakli.rodonaia@ibsu.edu.ge
** Ph.D. student , Faculty of Computer Technologies and Engineering, International Black Sea University, Tbilisi, Georgia. 
   E-mail: mmousa@ibsu.edu.ge
*** Lecturer, Faculty of Computer Technologies and Engineering, International Black Sea University, Tbilisi, Georgia. E-mail: vrodonaia@ibsu.edu.ge



Irakli RODONAIA, Medhat MOUSA, Vakhtang RODONAIA

16

Journal of Technical Science and Technologies; ISSN 2298-0032

• An interface  publishing and making available struc-
tural and behavioral information about the component itself in 
the form of attributes. Among them, attribute id is mandatory 
and is bound to the name of the component. Notably, compo-
nent names are not required to be unique; this would allow us 
to easily model replicated service components.

• A knowledge repository  managing both application 
data and awareness data, together with the specific handling 
mechanism. The knowledge repository of a component stores 
also the whole information provided by its interface, which 
therefore can be dynamically manipulated by means of the 
operations provided by the knowledge repositories’ handling 
mechanisms

• A set of policies  regulating the interaction between 
the different internal parts of the component and the interaction 
of the component with the others.

• A process  P  together with a set of process definitions 
that can be dynamically activated. Some of the processes in 
P perform local computation, while others may      coordinate 
processes interaction with the knowledge repository and deal 
with theissues related to adaptation

Finally, SYSTEMS aggregate COMPONENTS through 
the composition operator .    

Access control is a fundamental mechanism for restrict-
ing what operations users can perform on protected resources. 
Many models of access control have been defined in the litera-
ture. One of them is the Policy Based Access Control model 
(NIST, 2009). In this model, a request to access a protected 
resource is evaluated with respect to one or more policies that 
define which requests are authorized. An authorization deci-

sion is based on attribute values required to allow access to a 
resource according to policies stored in system’s components. 
Component attributes are here used to describe the entities that 
must be considered for authorization purposes. On this basis 
the SACPL (SCEL Access Control Policy Language), a sim-
ple, yet expressive, language for defining access control poli-
cies and access requests, is considered (Rocco De Nicola et al, 
2013) 

Policies are hierarchically structured as trees. A policy is 
either an atomic policy or a pair of simpler policies combined 
through one of the decision combining operators p-o (permit 
override) and d-o (deny override). An atomic policy is a pair 
made of a decision and a target. The target defines the set of 
access requests to which the policy applies. The decision, i.e. 
permit or deny, is the effect returned when the policy is ‘appli-
cable’, namely the access request belongs to the target. Other-
wise, i.e. when a request does not belong to the policy’s target, 
the policy is ‘not-applicable’, which in this simplified setting 
has the same effect as deny. A target is either an atomic target 
or a pair of simpler targets combined using the standard logic 
operators and and or. An atomic target is a triple denoting the 
application of a matching function to values from the request 
and the policy, like e.g. greater-than(subject.skill; threshold – 
object.dependability). Finally, Expressions are built from val-
ues and attributes through various operators. SACPL requests, 
ranged over by  ρ, are functions mapping names to elements and 
are written as collections of pairs of the form (name; element). 
A request’s element can be a knowledge item, a component’s 
interface, the type of an action, etc. In its turn, an interface 
provides a set of attributes characterizing the corresponding 
component, which can be either the subject or the object of the 
request. A typical example of request is as follows: 

Here, the subject identified by the interface requires the     
authorization      to withdraw  the item  t from component    .     
For  example,   the    request’s subject    is   obtained  by calling  
ρ (subject),   which returns    . 

Autonomic  computingis widely used in spatial-temporal 
data analysis for online prediction of dengue fever outbreaks 
(R. Buyya et al.,2009), the science cloud (P. Mayer et al., 2012), 
real time collection and dissemination of personal health data 
(ECG: electrocardiograms) to patients and health-care profes-
sionals (Suraj Pandey et al., 2012), etc. 

 Figure 1: SCEL components

Figure 2: Functional description of the component
The operational and system semantics of SCEL is described 
in detail in (Rocco De Nicola et al., 2013).

Figure 3: Cloud Platform
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Cloud computing in these different areas can be thought 
of as a collection of  desktops, servers, notebooks or virtual 
machines running the Cloud Platform (CP). Each (virtual) 
machine is running one instance of the Cloud Platform called 
Cloud Platform instance (CPi).Each CPi is considered to be a 
service component. Multiple CPs communicate over the Inter-
net (IP ptotocol), thus forming a cloud and within this cloud 
one or more service component  ensembles (Figure 3).

Each CPi has knowledge. The knowledge consist of what 
the CPi knows about itself (properties set by developers), about 
its infrastructure (CPU load, available memory), and about oth-
er CPis (acquired through the network). Since there is no global 
coordinator, each CPi must build its own world view and act 
upon the knowledge available. The CPi may acquire knowledge 
about its infrastructure using an infrastructure sensing plug-in, 
which provides information about static values such as proces-
sor speed, available memory, available disk space, number of 
cores etc. and dynamic values such as currently used memory, 
disk space,  CPU load, characteristics of current traffic flowing 
through the CPi,etc).

Each CPi has also  a connectivity component which ena-
bles it to talk to other CPis over the network. The protocol fol-
lowed by these communications must enable CPis to find one 
another and establish links, for example by manually entering 
a network address or by a   discovery mechanism. Furthermore, 
CPis must be able to query others for knowledge and distribute 
their own. Finally, the protocol must support exchange of data 
and applications.

Each CPi is considered to be autonomic in the sense that 
it may join and leave the cloud at will. The cloud is thus a 
dynamic cloud and works without a central coordinator in a 
peer-to-peer manner. 

1. Statement of the problem

The following scenario is considered. A singleton applica-
tion currently runs on one of the VMs at Data Center 2 (VM7 in 
Service Component Ensemble 2.  This application runs alone 
on its node and,since the application is a singleton, no addition-
al instances can be spawned. During the sessionthe application 
experiences consistently high CPU load. This increase may be 
caused either by legitimate traffic overload or  by coordinated 
attacks (DDOS) launched against the PaaS provider. The lat-
ter might be wrongly assumed to be legitimate requests and 
resources would be scaled up to handle them. This would result 
in an increase in the cost of running the application (because 
provider will be charged by these extra resources) as well as a 
waste of energy. Hence, it is necessary to distinguish between 
these two cases, the earlier this distinction is made, the higher 
is the degree of protection of the application from failure and 
poor performance.To provide this protection, the following se-
curity measures are suggested. The traffic flows through the 
node (CPi) has to be analyzed using Kolmogorov complexity 
metrics (see later in the text). During the session the constant 
monitoring of the metric (by the special probe implemented in 
the separate  module), along with measure of CPU load, is be-
ing executed. If the simultaneous increase of these two  metrics 
is registered at least in 3 successive time units, the conclusion 
about the real treat of the DDOS attack must be drawn. As a 
result, the application has to migrate from the CPi where it was 
running to another CPi (which may belong to the same ensem-

ble or other ensemble). A new CPi must be found according 
to some requirements: complexity level and  CPU load must 
be rather low, integrated hardware index (which includes such 
indicators as processor speed, available memory, available disk 
space, number of cores, etc) must correspond to the application 
resource requirements (they are published in the interface of 
the CPi where the application is running). If the required CPi is 
found, the application has to migrate there  as soon as possible  
and stop its running on the “old” CPi.

We assume that, other than id,  the interfaces   provide 
the attributes “KLDiv”, “CPULoad” and “Hardware” stores a 
context information, updated by the underlying infrastructure 
(usually, from the firewalls, gateways or special probes) and 
are `sensed’ by the managed element.

The CPi where the application is running is the SCEL com-

ponent:
The autonomic manager AM is defined as follows:
AM  PKLDivMonitor [PCPULoad ]
PKLDivMonitorr  qry(“KLDivLevel”, “high”) @ self.
get(“KLDivHigh”, false) @self.
put((“KLDivHigh”, true) @self. 
qru(“KLDivLevel”,”low”)@self.
get(“KLDivHigh”,true)@self.
put(“KLDivHigh”,false)@self.PKLDivMonitor
PCPULoad qry(“CPUloadLevel”,“low”)@self.get 

(“CPULow”, false) @self.
put((“CPULow”, true) @self. qru(“CPUloadLevel”,” 
high”)@self.
get(“CPULow”,true)@self.
put(“CPULow”,false)@self. PCPULoad
PMigrateCP i qry(“required_functionality_id”, ?X)@ self.
  /* retrieving from the knowledge repository the process 

implementing  a required functionality  id and bounding it to a 
process variable X  */

get(“required_functionality_id_args”, ?y,?z) @self.
qry(“CPiId”, ?c) @ Ω  .  /* searching an item c   among 

components belonging to the ensemble identified by predicate     
Ω  */

fresh(n).  /*  fresh name n is used for coordination pur-
poses  */

put(“required_functionality_id_params”,n,y,z)@c /* stor-
ing actual parameters  of theprocess  to be executed in the 
found component c : moving from VM7 to MV5 on fig.2  */

get(“required_functionality_id”, “terminated”,n) @self.  
/* removing the process from the knowledge repository of ‘old’ 
CPi */

get(“required_functionality_id”, X) @self.nil
/* eliminating the process in ‘old’ CPi */
Here the predicate  Ω  is determined as follows:  

Ω   (  ) = (  . KLDivLevel=”low”) (∧     .CPU-
Load <75)
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  ∧   (    .Hardware>=5) )
and is used for group-oriented communication in the action  

qry(“CPiId”, ?c) @  Ω   .  This predicate defines the ensemble 
of components which publish in their interfaces attributes “KL-
DivLevel”, “CPULoad” and” Hardware”along with relevant 
values. We assume that these  attributes are provided by the 
interface of each component and obtain dynamically updated 
values from corresponding probes (sensors) as a result of con-
stant monitoring (sensing) of the computing environment.

We assume also that the attribute “KLDivLevel” (Kullback-
Leibler divergence) gives an  indication in the range [0:m] , 
m - some positive real number (see explanation below in the 
text) of data flow through the ensemble, the attribute “CPU-
Load” – in the range [0:100], the attribute “Hardware” – in 
the range [0:10]. In this context the meaning of the predicate   
is as follows: find a component CPi (or components) where 
the  “ComplexityLevel” is low (i.e. less than 0.8), “CPULoad” 
is less than 75  and integrated hardware index “Hardware” is 
more than 5.

The process Ps  executed by the managed element ME  is:
Ps  get (“required_functionality_id_params”,?id, ?y, 

?z)@self.
get(“load”, ?l) @self.
get(“hardware”, ?h) @self.
put(“load”, (l+5))@self.
put(“hardware”, (h-10))@self.   
Ps [X(id, y, z)]     /* the new process (additionally  to the 

already running process Ps), having actual parameters id, y, 
z,starts  */

The policy    in force at the component results from the 
composition, by means of the 

p-o (permit override) and  d-o (deny override) operators, 
of the following policies:

  deny; target:{}       *  deny all *                                                                                
e permit ; target:{equal(subject: id; n) and     *permit
                                                                   local qry*
                            equal(object: id; n) and            
                            equal(action; qry) and             
                            equal(subject: KLDivLevel;  level) and
                       less-or-equal-than(CPULoad; 
                       treshold)}  
    permit ; target:{equal(subject: id; n) and     * permit
                                                          remote     qry  *                           
                            equal(object:   id; m) and      
                            equal(action; qry) and             
                            equal(subject: KLDivLevel;  level) and
                        less-or-equal-than(CPULoad; 
                        treshold)}  
   permit;target:{equal(subject:id;n) and          * always
                                                       permit local put *
                            equal(object:   id; n) and           
                            equal(action; put)}             

  permit;target:{equal(subject:id;n) and       *always  

                                                  permit remote put*         
                          equal(object:   id; m) and  
                          equal(action; put) }         
   deny;target:{equal(subject: id; n) and     *always deny 
                                                                  remote get *  
                          equal(object:   id; m) and           
                          equal(action; get) }           

2. Detection of DDoS Attack Using Kullback-Lei-
bler Divergence Metric.

In the approach to autonomous computing security and 
anomaly detection, developed in the paper, the notions of   
netflows, their informational-theoretical metrics and compo-
nents’ autonomic manager are essentially leveraged. 

A network flow can be defined in many ways. In a gen-
eral sense, a flow is a series of packets with some attribute(s) 
in common. Each packet that is forwarded within a router or 
switch is examined for a set of IP packet attributes. These at-
tributes are the IP packet identity or fingerprint of the packet 
and determine if the packet is unique or similar to other pack-
ets. All packets with the same source/destination IP address, 
source/destination ports, protocol interface, and class of ser-
vice are grouped into a flow and then packets and bytes are 
labeled. This methodology of fingerprinting or determining a 
flow is scalable because a large amount of network information 
is condensed into a database of  netflow  information called 
the netflow cache (Introduction to Cisco IOS® NetFlow, 2012)

Figure 4: Netflow schema

A netflow-enabled device (netflow exporter: router or 
switch) (see the fig.4) sends to the netflow collector  single 
flow as soon as the relative connection expires. This can hap-
pen when 1) when TCP connection reaches the end of the byte 
stream (FIN flag orRST flag) are set; 2) when a flow is idle for 
a specific timeout; 3) if a connection exceeds long live terms 
(30 minutes by default). Packets captured by the netflow col-
lector  are stored to a flow storage . As stated by (D. Vitali et al., 
2012), port and address IP distributions are highly correlated 

in network traffic. For this reason, we only considered 
source and destination IP. 

Flows accumulated at the flow storage, are then subdivided 
into component flows. That is, flows which have the compo-
nent’s IP address as a destination address are grouped and sent 
to the corresponding component (more exactly, to the auto-
nomic manager of a component - these flows are marked with 
blue arrows on the fig.5). After receiving their destined flows, 
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the component’s autonomic manager can start the processing 
in order to reveal the abnormal behavior of flows in accordance 
with the following technique.

Figure 5: Interaction between netflow devices and autonomic 
components

Information theory based metrics enable sophisticated 
anomaly detections directly with the whole traffic that are dif-
ficult to provide with simpler metrics, like aggregated  traffic 
workload, number of packets or single host traffic.  The Kull-

back-Leibler divergence equation (D. Vitali et al., 2012)  is:
where the index i in front of the right part of the equation 
stands to denote:  ∑

i

A low DKLvalue means a high similarity in the two prob-
ability distributions, on the other hand, high divergence values 
correspond to low similarity. Port and address IP distributions 
are highly correlated in network traffic. For this reason we only 
considered source and destination IP. Network flows are aggre-
gated into time blocks of a fixed size (1 minute by default). Let     

 be the number of flows that cross the monitored network in 
a time block. Let    be the number of flows that have IPi as  
source (or destination) address. We associate  pi  to the packet 
distribution  over a time block t and qi to the packet distribution 
of the previous time block t −1:

The Kullback-Leibler divergence is computed as follows:
So if the DKL during 2 succesive time moments  is near to 

zero, it means that patterns of IP addresses (source or destina-
tion) in packets are the same or very close. It can be consid-
ered as DDoS (or DoS) attacks (depending on combination of 
source od destination addresses patterns)

Figure 6: Kullback Leibler details on  source  IP address

On the fig.6 the plot for DDoS attack for some selected 
time interval  is shown. It is characterized by a large number 
of attack sources. Altough the Kullback-Leiblet metric is pre-
dominantly close to zero (it means that  the source and destina-
tion IP are the same during the specified time interval - this is 
very suspicious from the anomal behaviourstandpoint), there 
are numerous peaks  in KUllback-Leibler metric’s value This 
fact  means that a great number of different IP source hosts are 
being connected the the attack.  

Once the autonomic manager detected the anomaly, it gen-
erates the relevant commands and sends them to the managed 
element of the component (as it is described above in the sec-
tion “Statement of the problem”). 

Conclusions 

The following issues are considered in the paper: 
• The notions of autonomic components (ACs) and autonomic-
component ensembles (ACEs) 
• Basic constructions of the SCEL (Software Component En-
semble Language) and SACPL (SCEL Access Control Policy 
Language) - Behaviors, Knowledge and Aggregations, accord-
ing to specific Policies. 
•  A scenario of migrating of VM in condition of the DDOS 
threat 
•  An approach of detection of DDOS attack using Kullback-
Leibler divergence metric
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