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Abstract 
       

In this study, progress and improvement of measurement theory is presented and mainly S.S. Stevens’ opinions and implemen-
tations on types of scales are discussed. Fundamentals of Measurement Theory, its historical evolution, basic goals of the measure-
ment theory are described and summarized. Influences of measurement theory on statistical analysis and relation between Stevens’ 
scale types and statistical methods are introduced. Types of scales are discussed in detail. Importance of preparing relevant data to 
evaluate real sociological facts is emphasized.
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Introduction

Finding real aspects of data, which are most suitable and 
important for us and using those aspects to construct a model of 
a concept, is a very significant issue in measurement. Measure-
ment theory is a branch of applied mathematics, which together 
with statistics allows us to validly define measurements and 
metrics and implement statistical analysis on our data.

Measurement is an essential concept in science. Conclu-
sions of empirical studies are based on values measured on 
research objects. The purpose of measurement is to differenti-
ate abilities across people (Suen, Principles of Test Theories, 
1990). During life, we are tested many times. Different kinds 
of questionnaires, rating scales, examinations, and some other 
measurement methods are used to evaluate and clarify ability, 
knowledge, or level of test takers. It is therefore crucial to as-
sess the objectivity, reliability, and quality of measurements. 

Studies on measurements start in 19th century, taking roots 
in works of French and German psychiatrists that verified the 
influence of mental diseases in motor, sensorial, and behavio-
ral-cognitive skills, and those of English researchers in the field 
of genetics, which highlighted the importance of measuring in-
dividual differences with the use of well-defined methodolo-
gies. (E.P. Araujo,, D. F. Andrade, S. Bortolotti, 2009)

The ‘classical’ school of measurement was developed in 
physics and other sciences by the end of the nineteenth centu-
ry. In the classical view, measurement discovered a numerical 
relationship between a standard object and the one measured. 
The property was seen as inherent in the object. This viewpoint 
is deeply ingrained in our language and society (Chrisman, 
1998).

Measurement, the assignment of numbers to objects to rep-
resent their gradual properties, can be ‘derived’ or ‘fundamen-
tal’. In derived measurement, we obtain the desired value of 
a magnitude for an object from other values we already have 
and which we related with the unknown value in a specific 
way. Derived measurement is by far the most common kind of 

measurement in scientific practice, but it is clear that, measure-
ment cannot always be derived. Fundamental measurement is 
essential for it is ‘where everything begins’. In fundamental, 
or direct, measurement we obtain the desired values with no 
previous measurements at all directly from qualitative empiri-
cal data (Diez).

Objectivity of measurement

Measurement theory enables us to analyze and manipulate 
data validly. Usage of statistics and probability helps to clarify 
quantitatively possible variances, errors. Main target in meas-
urement is obtaining meaningful and objective results. When 
we compare properties of objects not all of our quantitative 
statements are objective. In the comparison of some properties 
of diamond and chalk, we can have a look to the following 
statements: The quotient of their masses equal to 100, the quo-
tient of their temperatures is 2, and the quotient of hardness is 
0.1. Only the first statement expresses something that depends 
on objects’ properties, but other statements depend on these 
properties and on the conventions adopted in the construction 
of the measurement scale. For this reason, we can say that the 
first statement is objective, while the others are not. If the tem-
perature is measured in degrees Celsius, the statement is true, 
but it is false with respect to degrees Fahrenheit. Although the 
statement that chalk’s temperature is twice diamond’s is not 
objective in this sense, the statement that the difference be-
tween the chalk’s  temperature at noon and at midnight is five 
times the difference between diamond’s temperature at noon 
and at midnight is objective. This raises a question of “why 
some quantitative statements are objective and others are not”. 
Measurement theory answers this question, by investigating 
the conditions that make measurement possible and by study-
ing the extent to which we can use the measures obtained to 
make objective statements about objects (Diez).
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Historical Development of Measurement Theory

According to Boumans (2005) Maxwell indicates that: 
“All the mathematical sciences are founded on relations be-
tween physical laws and laws of numbers, so that the aim of 
exact science is to reduce the problems of nature to the determi-
nation of quantities by operations with numbers”. (Boumans, 
2005)

The theory of measurement is an interdisciplinary subject 
that grew out of the attempt to put the foundations of measure-
ment on firm mathematical foundation. Measurement Theory is 
the result of two different complementary research traditions. 

The first begins with Helmholtz (1887). Helmholtz took 
up Maxwell’s view and continued to think in this direction; and 
continuous with Hölder and Campbell, and focuses on com-
parative combinatorial systems and real morphisms. Helmholtz 
was the first to ask the main question on how fundamental 
measurement is possible. He was also the first one to answer 
it by providing a set of conditions that the system must satisfy. 
He did not demonstrate that his conditions were sufficient for 
numerical representation. This was achieved by Hölder (1901). 
He studied the necessity/sufficiency of a set of conditions for 
the numerical representation of a qualitative comparative-com-
binatorial system. 

Hölder gives seven conditions, or axioms, that the domain 
D of objects, the qualitative relation  greater than or equal to 

 and the qualitative operation o must satisfy and demon-
strates that these conditions are jointly sufficient for there to be 
an isomorphism from < D,  ,o > onto < Re+, ≥, +>; that is 
for there to be a 1-1 mapping f:D  Re+ from the domain of 
objects into the positive real numbers so that 

 i)  a  b iff  f(a) ≥f(b) 
 ii) aob  c  iff  f(a)+f(b)= f(c).
 In this sense numbers represent magnitudes, since numbers 

assigned to objects are such that qualitative -facts among ob-
jects are ‘replicated’ by quantitative ≥-facts about the assigned 
numbers, and the same goes for qualitative o-facts and +-facts. 
This result is known as Hölder’s Theorem.

After Hölder, Huntington (1902) presented similar results. 
Wiener (1921) was also heading in the same direction. 

The second tradition originates in the work of Stevens and 
his collaborators on scale types, transformations, and invari-
ance (Diez).

The effects of fundamental measurement theory for statis-
tical analyses continue to be discussed. On one side is the view 
that the scale on which a set of measurements lies determines 
the type of statistical treatments that are suitable for applica-
tion to the measurements. The opposing view is that there is no 
relation holding between the measurement scale and statistical 
procedures; essentially anything goes, relative to the measure-
ment stipulations. (James Townsend , Gregory Ashby, 1984). 

Representational Theory 

First  aspect of fundamental  measurement is the represen-
tation theorem. The representational theory provides for the as-
signment of numbers to the empirical objects in such a way that 
interesting qualitative empirical relations among the objects 
are reflected in the numbers themselves as well as in important 
properties of the number system. Often in the case of infinite 
set of objects, one may simply  prove that the assignment exists 

or state a method by which the numbers can be assigned (James 
Townsend , Gregory Ashby, 1984). 

In measurement theory scales (assignments) are identified 
with homomorphisms. Formally, an admissible transformation 
of a scale  is a transformation of numbers assigned so that one  
gets a homomorphism (Roberts, 2009). 

In the formal representational theory this is expressed as: 
Take a well-defined, non-empty, class of extra-mathematical 
entities, X. Let there exist on that class a set of empirical rela-
tions R={R1 , ..., Rn }. Let us further consider a set of num-
bers N (in general a subset of the set of real numbers Re) and 
let there be defined on that set a set of numerical relations P 
={P1, ...,Pn} . Let there exist a mapping M with domain X and 
a range in N, 

M:X  N which is a homomorphism of the empirical 
relationship system X,R  and the numerical relational sys-
tem  N,P (Finkelstein 1975, 105).This is illustrated below 
in figure 1 where xi ϵ  X and ni ϵ N. M is so called ‘scale of 
measurement’

Figure1: General Measurement Process(Boumans 2005)

Note: Group homomorphism from group (G,*) to group 
(H, •) is a function h: G → H such that for all u and v in G it 
holds that h (u*v) =h (u).h (v)

Measurement theory is supposed to analyze the concept of 
a scale of measurement. It distinguishes various types of scale 
and describes their uses, and formulates the conditions required 
for the existence of scales of various types.

However, the representational theory of measurement has 
turned too much into a pure mathematical discipline, leav-
ing out the question of how the mathematical structures gain 
their empirical significance in actual measurement. Heidel-
berger (1994a, 1994b) discussed this problem of empirical 
significance. (Boumans, 2005) 

In the development process of representational theory, 
Heidelberger emphasizes that, most followers of the represen-
tational theory of today have adopted an ‘operationalist’ inter-
pretation. 

 The operational theory avoids the assumption of an un-
derlying reality, requiring only that measurement consists of 
precisely specified operations; scientific theories concern only 
relationships among measurements. The classical theory, like 
the representational theory, assumes an objective reality, but, 
unlike the representational theory, holds that only quantitative 
attributes are measurable, and measurement involves the dis-
covery of the magnitudes of these attributes. In the classical 
theory, like the operational theory, meaningfulness comes from 
empirical support for scientific theories describing the interre-
lationships of various measurements. (Sarle, 1997)

Operationalist interpretation is best illustrated by Stevens’ 
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dictum (Stevens 1959, 19) :
“Measurement is the assignment of numerals to objects or 

events according to rule ‘any rule’. Of course, the fact that nu-
merals can be assigned under different rules leads to different 
kinds of scales and different kinds of measurements, not all of 
equal power and usefulness. Nevertheless, provided a consist-
ent rule is followed, some form of measurement is achieved” 
(Boumans, 2005).

Stevens’ Scales of Measurement 

Stevens adopted the representationalist philosophy in a 
‘nominalist’ form (Michell, 1993), defining measurement as 
the ‘assignment of numbers to objects according to a rule’ 
(Chrisman, 1998).

According to Townsend and Ashby, Stevens was respon-
sible for some critically important ideas regarding the use and 
misuse of measurement scales, the theory has progressed far 
beyond his work. Indeed several of his most valuable concepts 
gain their true significance only in the context of later develop-
ments. 

Stevens (1946) was defending that measurement exists in a 
variety of forms and that scale of measurement fall into certain 
definite classes. These classes are determined both by the em-
pirical operations invoked in the process of “measuring” and 
by the formal (mathematical) properties of scales. Furthermore, 
the statistical manipulations that can legitimately be applied to 
empirical data depend upon the type of scale against which the 
data are ordered. The type of scale achieved depends upon the 
character of the basic empirical operations performed. These 
operations are limited ordinarily by the nature of the thing be-
ing scaled and by our choice of procedures, but once selected; 
the operations determine that there will eventuate one or an-
other of the scales (Stevens, 1946) which are shown in table1. 

Table 1 reproduces Stevens’ original table exactly so that 
his presentation is not clouded by the reinterpretations devel-
oped over the past fifty years. (Chrisman, 1998).

Table1: Stevens’ scales of measurement (1946)

Mathematical Determination of Scales of Measure-
ment

In the theory of measurement, we think of starting with a 
set A of objects that we want to measure. We shall think of a 
scale of measurement as a function f that assigns a real number 
f(a) to each element a of A. More generally we can think of f(a) 
as belonging to another set B.

The representational theory of measurement gives con-
ditions under which a function is acceptable scale of meas-
urement. Following ideas of Stevens (1946, 1951, 1959) ex-
pressing an admissible transformation as a function that sends, 
transfers one acceptable scale into another, for example Centi-
grade into Fahrenheit and kilograms into pounds.

Theoretically an admissible transformation of a scale can 
be thought of as a function  that takes f(a) into ( of)(a). 
Stevens classified scales into four types according to the asso-
ciated class of admissible transformations. These are nominal, 
ordinal, interval, and ratio scales.

If the admissible transformations are the (strictly) mono-
tone increasing transformations, this scale is an ordinal scale. 
Comparing sizes is meaningful in ordinal scale: f (a)>f (b)

If the admissible transformations are the form: 
(x)=αx+β,α>0  , It is called interval scale.

Temperature scale is an interval scale since the transfor-
mation from Centigrade into Fahrenheit involves the following 
form:

  
(x)=(9/5)x+32.

If the numbers assigned to two pairs of objects are equally 
different, then the pairs of objects must be equally different in 
the real world. For interval scales, it is meaningful to compare 
assigned numbers as shown below:

If   a-b>c-d  then, f(a)-f(b)>f(c)-f(d). ‘Or vice versa’.
We call a scale a ratio scale, if the admissible transforma-

tions are the form:
  

(x)=αx,α>0.

Such transformations change the units. Transformation 
from kilograms into pounds involves the admissible transfor-
mation (x)=2,2x  hence, mass is an example of a ratio scale. 
If person A is 80 kg and B is 40 kg, it is obvious that person A is 

twice heavier than person B. Comparison of ratios    

is meaningful for ratio scale (Roberts, 2009). 
Brief explanation of the types of scales is given in the next 

section.
Types of Scales

Nominal Scales

Nominal scales are composed of sets of categories in 
which objects are classified. A nominal scale is simply some 
placing of data into categories, without any order or structure. 
The nominal scale does not express any values or relationships 
between variables. Variables measured on a nominal scale are 
categorical or qualitative variables.  

This scale has no numeric significance. The only possible 
arithmetic operation on this scale is counting. According to the 



Mehtap ERGÜVEN

30

Journal of Technical Science and Technologies; ISSN 2298-0032

Stevens, only non-parametric statistics such as computation of 
chi-square and finding mode can be used here. Yes/no, male/
female, married/single, etc. are examples of dichotomous nom-
inal data and nationality, consisting of multiple values, such 
as ‘Georgian’, ‘Turkish’, ‘Australian’ etc. is example of non-
dichotomous data.

Even at this level, regression analysis is possible, using 
dummy variables; for example, gender can be treated as a 
dummy variable equaling 0 for subjects of male gender and 
1 for subjects of female gender. They can be used either as an 
independent variable in an ordinary least squares regression, 
or as dependent variables in the probit or logistic regression. 
“A probit model is a type of regression where the dependent 
variable can only take two values, for example married or not 
married.” (Wikipedia, 2012)

Table 2: Example of nominal scale usage in questionnaire.

Ordinal Scales

The ordinal scale arises from the operation of the rank 
ordering (Stevens, 1946). The main characteristic of this type 
of scale is that, the categories have a logical order or ordered 
relationship to each other. Ordinal variables do not tell any-
thing about the absolute magnitude of the difference between 
1st and 2nd or 4th and 5th. For a scale to be at the ordinal level 
of measurement, the categories comprising the scale must be 
mutually exclusive and ordered (Knapp, 1990)

Economic situation, joining to the social activities, level 
of success, grades for academic performance (A, B, C ...) are 
some variables, which are useful for statistical implementa-
tions in the ordinal scale. Examples of the type of statistical 
operations appropriate to this scale are finding median, mode, 
rank order correlation, variance (non-parametric). An ordinal 
level of measurement example is given below:

Rank the students according to their English Exam results 
from best to worst.
                    -----Giorgi A.
                    -----Natia S.
                    -----Aytaç K.

Interval Scales

On this type of measurement scales, one unit of scale 
shows the same magnitude on the trait or characteristic being 
measured across the whole range of the scale. This means that 
we can interpret differences in the distance along the scale. 
All quantitative attributes are measurable with help of interval 
scale. Beside equality of units, zero does not represent the ab-
solute lowest value. Rather, it is point on the scale with num-
bers both above and below it. 

It is clear that, a student who scores 80% is probably a 
better student than someone who scores 50%. The difference 

between the two scores is 30%. In an interval scale, the data 
can be ranked and for which the difference between the two 
values can be calculated and interpreted. The zero point on an 
interval scale is arbitrary and is not a true zero; therefore, it 
is not possible to make decision about how many times higher 
one score is than another. For instance in temperature, a tem-
perature of 30 degrees Fahrenheit is not twice as warm as one 
of 15 degrees Fahrenheit and they are not in the ratio 2:1! Like 
temperature, IQ might also lie on interval scale. Interval scale 
data would use parametric statistical techniques: Mean and 
standard deviation, Correlation – r, Regression, Analysis of 
variance, Factor analysis plus a whole range of advanced mul-
tivariate and modeling techniques.

Stevens clearly demonstrated the difference between ordi-
nal and interval scales. An ordinal variable arises from a scale 
for which all order- reserving (monotonic) transformations are 
admissible; that is, they leave the scale form invariant. For an 
interval variable, the only admissible transformations are those 
of the linear-form y = bx + a (Knapp, 1990).

The most common examples of interval scales are scores 
obtained using objective tests such as multiple-choice tests of 
achievement. It is widely assumed that each multiple-choice 
test item measures a single point’s worth of the trait being 
measured and that all points are equal to all other points. How-
ever, such tests do not measure at the ratio level because the 
zero on such tests is arbitrary not absolute. To see this, consider 
someone who gets a zero on a multiple-choice final examina-
tion. Does the zero mean that the student has absolutely no 
knowledge of or skills in the subject area? Probably a score of 
zero only indicates that they know nothing on that test, ‘not that 
they have zero knowledge of the content domain’. (M.L., 1997)

Ratio Scales
 
Ratio scales permit the researcher to compare both differ-

ences in scores and the relative magnitude of scores. This has 
the properties of an interval scale together with a fixed origin or 
zero point. Actually, in the physical sciences and engineering 
measurement is done on ratio scales. Mass, length, duration, 
energy, and electric charge are variables of physical measures 
that can be used in ratio scales. Phrases such as “four times” 
and “twice” are meaningful at the ratio level. When we talk 
about interval scale, we mentioned that it is not possible to find 
the ratio of units, since there is not absolute zero point. I can 
explain this situation with the following example. 

Let us consider three students A, B, C and their mathemat-
ics examination results as 40, 50, and 80 respectively. Only if 
the beginning point is zero we can say that student C is twice 
as successful as A. However, if the base point is starting from 
20 it is obvious that student C is three times more successful 
than student A.

Table3: General characteristics of scales’ types.
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The miss point of the interval scale is that zero point is 
chosen arbitrary. (Belgeler, 2013). Ratio scale is like the inter-
val-scale variable, however it has a non-arbitrary zero value. 
Beside all the statistics permitted for interval scales, ratio scale 
allows finding geometric mean, harmonic mean, coefficient of 
variation, logarithms too.

Conclusion

Measurement theory encourages people to think about the 
meaning of their data and important assumptions behind the 
analysis. The purpose of this article is giving brief informa-
tion about historical development of measurement theory and 
its different implementations. Stevens showed that strong as-
sumptions are required for reliable statistics. Here I try to clar-
ify the main differences between scale types and I explained 
feasible analyses with respect to scale types.

After Stevens, different suggestions and discussions 
started. His opponents could justifiably protest that in science 
all facts are permissible. Not with standing this, however, it 
is somewhat worrisome when the conclusions derived from 
measurements depend on quite arbitrary aspects of the chosen 
measurement scale. Therefore, there may have been some point 
to Stevens’ prescriptions. (Michell, 1986)  

Beside the opinions of antagonists, using different scales 
in any survey will help to the respondent to prevent them from 
clicking the highest, lowest or middle rating all the time.  An-
other benefit of using different kinds of scales in the survey is 
that each scale provides us a unique perspective on the data 
that we are analyzing (Taylor, 2012). Generally, in question-
naires, we use Stevens’ scale types but the people are not aware 
of it. There is a hierarchy in the level of measurement and as 
I explained at lower levels assumptions are less restrictive. In 
the upper level, the current level contains all the properties of 
the previous one. Main principles of statistical observations are 
coincided with Stevens’ scale types. As a result, Measurement 
theory encourages people to provide meaningful information 
about reality. If the target is to obtain the qualitative research 
results, using appropriate scale type will give us results that are 
most beneficial and reliable. 
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