
Journal of Technical Science and Technologies; ISSN 2298-0032

41

Programming Part for Robot Painter
Using Image Processing Algorithms Written in JAVA

Nodar MOMTSELIDZE*
Zura SEKHNIASHVILI**
Giorgi DARSALIA***

Abstract
 Robot engineering is becoming one of the most popular field of artificial intelligence. Robots already can do the things which
were still impossible several years ago. They can play soccer, play music, think; play chess, fight, and can do much, much more.
This article is dedicated to the problem of creating program (written in java) when embedded in a robot’s logic board, would en-
able it to paint. This is a program which scans the image pixel by pixel and draws another image which is an outline of the original
image.

Keywords:image processing; Canny edge detection; Gaussian smoothing

Introduction

The following article describes how to convert image tak-
en by camera into an image which contains only the edges of
the original image, how to extract all edge coordinates from
produced image and save them in memory and how to draw
only the edges of the original image using saved coordinates.
The article also describes image processing in detail using sev-
eral famous algorithms.

The following algorithms are used
1.	 Image processing.
2.	 Edge detection.
3.	 Gaussian Smoothing.

Realization

The source image (relative or full) path as a string is sup-
plied to the program. It creates image from this path and starts
processing it at the moment the program is run. Using an edge
detection algorithm (in our case “Canny Edge Detection” see
explanation below) the program processes the original image
and creates a new image (which contains only black edges (all
colorful edges are converted into black) of original image on
white background) and integer array which contains the infor-
mation about image pixels. The array is one dimensional with
the length of image width multiply by image height. It contains
information whether image pixel is black or white. The array’s
first image width elements contain information about pixels on
the 1st horizontal line (from the top) of image, the next image
width elements of array contain information about pixels on the
2nd horizontal line of image and so on…

The constructor of ImageDraw class.
ImageDraw(String fileLocation){

CannyEdgeDetector detector = new CannyEdgeDetec-
tor();

 detector.setSourceImage(image);
 detector.process();

 //edges is instance of BufferedImage class.
 edges = detector.getEdgesImage();
	 // data is one dimensional array
 data = detector.getData();
}

The variable edge is actually the image which is drawn by
a program. In case of interrupting the program here and draw-
ing this image on canvas, using graphics.drawImage() method
the result would be the same for the following program, but
the point is that we are not interested in drawing this image on
computer screen.

Our aim is to embed this program into a robot’s “brain” in
order that the robot will be able to draw the images on paper.
For this purpose, the program needs to know all coordinates of
the image edges, which we need to find out. So we move to the
next step of the program.

We introduce a new algorithm to process the array of data.
The array contains information about all pixels of “image of
edges”, -1 means the pixel is black and in other case the pixel
is white. For example: The image dimensions are 480x600 and
we are referring to 500th element of the data array. This means
that we are talking about pixel of image at coordinates (x is
reminder of 500 divided by 480 and y is the integer of 500
divided by 480. x = 20 and y = 1) 20x1 from top-left corner (x
is from left, y is from top).

In explanation we refer to “image of edges”, but generally
the program works on data array. As the image is only black
edges on a white background, the program finds black pixels.

* Prof., Faculty of Computer Technologies and Engineering, International Black Sea University, Tbilisi, Georgia. E-mail:nmomtselidze@ibsu.edu.ge
** Bachelor student, Faculty of Computer Technologies and Engineering, International Black Sea University, Tbilisi, Georgia.
*** Bachelor student, Faculty of Computer Technologies and Engineering, International Black Sea University, Tbilisi, Georgia.

Nodar MOMTSELIDZE, Zura SEKHNIASHVILI, Giorgi DARSALIA

42

Journal of Technical Science and Technologies; ISSN 2298-0032

It saves the coordinate in LinkedList and “follows detected
point” (using followLine method). It checks every neighbor-
hood points of detected point and as it finds black pixel it saves
the coordinates again. This process continues till the program
finds black pixels in the neighborhood of previous detected
pixel. If the program could not find black pixel it continues
horizontal scanning from the first detected pixel until it finds
another one.

This method scans whole image and saves all coordinates
in a List.

The last step is to output edges. Right now the output im-
age is drawn on computer screen but our purpose is getting
output image on paper or on a board. That’s why we created
abstract class “Painter” with abstract methods: “penUp”, “pen-
Down”, “moveTo” which are implemented for java PCanvas
(as the output image is drawn on Canvas), but later they will be
implemented for robot as drawing orders. We have also “penI-
sUp” Boolean variable (using which we check if the program
is in drawing process or not), “curx” and “cury” integer vari-
ables which refers to current pen position. We have additional
“rmoveTo” abstract method (which increments “curx” and
“cury” variable which “incrx” and “incry” method parameters),
“MAXX” and “MAXY” properties (drawn image width and
height).

Here is an implementation of abstract class Painter.

These steps are essential for the program, as CannyEdge-
Detection is used in ImageDraw constructor and drawing
methods, such as “penUp”, “penDown”, “moveTo” and others
are implemented in PainterAWT class.

Here is an implementation of drawing image using data ar-
ray coordinates. “r” variable is an instance of Artist class (class
which contains the main method).

Implementation of followLine method, which generates
abstract commands.

Examples:

Programming Part for Robot Painter

43

Journal of Technical Science and Technologies; ISSN 2298-0032

Canny Edge Detector

The Canny edge detector is an edge detection operator that
uses a multi-stage algorithm to detect a wide range of edges in
images. It was developed by John F. Cannyin 1986. Canny also
produced a computational theory of edge detection explaining
why the technique works.

The Canny operator was designed to be an optimal edge
detector (according to particular criteria --- there are other
detectors around that also claim to be optimal with respect to
slightly different criteria).

How It Works?

The Canny operator works in a multi-stage process. First
of all the image is smoothed by Gaussian convolution. Then a
simple 2-D first derivative operator (somewhat like the Roberts
Cross) is applied to the smoothed image to highlight regions
of the image with high first spatial derivatives. Edges give rise
to ridges in the gradient magnitude image. The algorithm then
tracks along the top of these ridges and sets to zero all pixels
that are not actually on the ridge top so as to give a thin line in
the output, a process known as non-maximal suppression. The

tracking process exhibits hysteresis controlled by two thresh-
olds: T1 and T2, with T1 > T2. Tracking can only begin at a
point on a ridge higher than T1. Tracking then continues in both
directions out from that point until the height of the ridge falls
below T2. This hysteresis helps to ensure that noisy edges are
not broken up into multiple edge fragments.

Guidelines for Use

The effect of the Canny operator is determined by three
parameters --- the width of the Gaussian kernel used in the
smoothing phase, and the upper and lower thresholds used by
the tracker. Increasing the width of the Gaussian kernel reduces
the detector’s sensitivity to noise, at the expense of losing some
of the finer detail in the image. The localization error in the
detected edges also increases slightly as the Gaussian width
is increased. Usually, the upper tracking threshold can be set
quite high, and the lower threshold quite low for good results.
Setting the lower threshold too high will cause noisy edges
to break up. Setting the upper threshold too low increases the
number of spurious and undesirable edge fragments appearing
in the output.

Development of the Canny Algorithm

Canny’s aim was to discover the optimal edge detection
algorithm. In this situation, an “optimal” edge detector means:

• good detection – the algorithm should mark as many real
edges in the image as possible.

• good localization – edges marked should be as close as
possible to the edge in the real image.

• minimal response – a given edge in the image should only
be marked once, and where possible, image noise should not
create false edges.

To satisfy these requirements Canny used the calculus of
variations – a technique which finds the function that optimizes
a given function. The optimal function in Canny’s detector is
described by the sum of four exponential terms, but it can be
approximated by the first derivative of a Gaussian.

Stages of the Canny Algorithm
Noise Reduction

Because the Canny edge detector is susceptible to noise
present in raw unprocessed image data, it uses a filter based
on a Gaussian (bell curve), where the raw image is convolved
with a Gaussian filter. The result is a slightly blurred version of
the original which is not affected by a single noisy pixel to any
significant degree.

Here is an example of a 5x5 Gaussian filter, used to create
the image to the right, with = 1.4. (The asterisk denotes a
convolution operation.)

Nodar MOMTSELIDZE, Zura SEKHNIASHVILI, Giorgi DARSALIA

44

Journal of Technical Science and Technologies; ISSN 2298-0032
Finding the Intensity Gradient of the Image

An edge in an image may point in a variety of directions,
so the Canny algorithm uses four filters to detect horizontal,
vertical and diagonal edges in the blurred image. The edge de-
tection operator (Roberts, Prewitt, Sobel for example) returns
a value for the first derivative in the horizontal direction (Gx)
and the vertical direction (Gy). From this the edge gradient and
direction can be determined:

The edge direction angle is rounded to one of four angles
representing vertical, horizontal and the two diagonals (0, 45,
90 and 135 degrees for example).

Non-maximum Suppression

Given estimates of the image gradients, a search is then
carried out to determine if the gradient magnitude assumes
a local maximum in the gradient direction. So, for example,
 • if the rounded gradient angle is zero degrees (i.e. the edge
is in the north-south direction) the point will be considered to
be on the edge if its gradient magnitude is greater than the mag-
nitudes at pixels in the north and south directions,

• if the rounded gradient angle is 90 degrees (i.e. the edge
is in the east-west direction) the point will be considered to be
on the edge if its gradient magnitude is greater than the magni-
tudes at pixels in the west and east directions,

• if the rounded gradient angle is 135 degrees (i.e. the edge
is in the north east-south west direction) the point will be con-
sidered to be on the edge if its gradient magnitude is greater
than the magnitudes at pixels in the north east and south west
directions,

• if the rounded gradient angle is 45 degrees (i.e. the edge
is in the north west-south east direction)the point will be con-
sidered to be on the edge if its gradient magnitude is greater
than the magnitudes at pixels in the north west and south east
directions.

From this stage referred to as non-maximum suppression,
a set of edge points, in the form of a binary image, is obtained.
These are sometimes referred to as “thin edges”.

Tracing Edges through the Image and Hysteresis
Thresholding

Large intensity gradients are more likely to correspond to
edges than small intensity gradients. It is in most cases impos-
sible to specify a threshold at which a given intensity gradi-
ent switches from corresponding to an edge into not doing so.
Therefore Canny uses thresholding with hysteresis.

Thresholding with hysteresis requires two thresholds –
high and low. Making the assumption that important edges
should be along continuous curves in the image allows us to
follow a faint section of a given line and to discard a few noisy
pixels that do not constitute a line but have produced large gra-
dients. Therefore we begin by applying a high threshold. This
marks out the edges we can be fairly sure are genuine. Starting
from these, using the directional information derived earlier,
edges can be traced through the image. While tracing an edge,
we apply the lower threshold, allowing us to trace faint sections

of edges as long as we find a starting point.
Once this process is complete we have a binary image

where each pixel is marked as either an edge pixel or a non-
edge pixel. From complementary output from the edge trac-
ing step, the binary edge map obtained in this way can also be
treated as a set of edge curves, which after further processing
can be represented as polygons in the image domain.

Differential Geometric Formulation of the Canny
Edge Detector

A more refined approach to obtain edges with sub-pixel ac-
curacy is by using the approach of differential edge detection,
where the requirement of non-maximum suppression is formu-
lated in terms of second- and third-order derivatives computed
from a scale space representation (Lindeberg 1998) – see the
article on edge detection for a detailed description.

Variational-Geometric Formulation of the Haral-
ick-Canny Edge Detector

A variational explanation for the main ingredient of the
Canny edge detector, that is, finding the zero crossings of the
2nd derivative along the gradient direction, was shown to be
the result of minimizing a Kronrod-Minkowski functional
while maximizing the integral over the alignment of the edge
with the gradient field (Kimmel and Bruckstein 2003). See ar-
ticle on regularized Laplacian zero crossings and other optimal
edge integrators for a detailed description.

Gaussian Smoothing

The Gaussian smoothing operator is a 2-D convolution
operator that is used to `blur’ images and remove detail and
noise. In this sense it is similar to the mean filter, but it uses a
different kernel that represents the shape of a Gaussian (`bell-
shaped’) hump. This kernel has some special properties which
are detailed below.

The Gaussian distribution in 1-D has the form:

where σ is the standard deviation of the distribution. We
have also assumed that the distribution has a mean of zero (i.e.
it is centered on the line x=0). The distribution is illustrated in
Figure 1.

In 2-D, an isotropic (i.e. circularly symmetric) Gaussian
has the form:

This distribution is shown in Figure 2.
The idea of Gaussian smoothing is to use this 2-D dis-

tribution as a `point-spread’ function, and this is achieved by
convolution. Since the image is stored as a collection of dis-
crete pixels we need to produce a discrete approximation to
the Gaussian function before we can perform the convolution.

Programming Part for Robot Painter

45

Journal of Technical Science and Technologies; ISSN 2298-0032

In theory, the Gaussian distribution is non-zero every-
where, which would require an infinitely large convolution ker-
nel, but in practice it is effectively zero more than about three
standard deviations from the mean, and so we can truncate the
kernel at this point. Figure 3 shows a suitable integer-valued

convolution kernel that approximates a Gaussian with a σ of
1.0.

Figure 3: Discrete approximation to Gaussian function with
σ=1.0

Once a suitable kernel has been calculated, then the
Gaussian smoothing can be performed using standard con-
volution methods. The convolution can in fact be performed
fairly quickly since the equation for the 2D isotropic Gauss-

ian shown above is separable into x and y components. Thus
the 2D convolution can be performed by first convolving with
a 1D Gaussian in the x direction, and then convolving with
another 1D Gaussian in the y direction. (The Gaussian is in
fact the only completely circularly symmetric operator which
can be decomposed in such a way.) Figure 4 shows the 1D x
component kernel that would be used to produce the full kernel
shown in Figure 3 (after scaling by 273, rounding and truncat-
ing one row of pixels around the boundary because they mostly
have the value 0. This reduces the 7x7 matrix to the 5x5 shown
above.). The y component is exactly the same but is oriented
vertically.

Figure 4: One of the pair of 1-D convolution kernels used to
calculate the full kernel shown in Figure 3 more quickly.

A further way to compute a Gaussian smoothing with a
large standard deviation is to convolve an image several times
with a smaller Gaussian. While this is computationally com-
plex, it can have applicability if the processing is carried out
using a hardware pipeline.

The Gaussian filter not only has utility in engineering ap-
plications. It is also attracting attention from computational
biologists because it has been attributed with some amount of
biological plausibility, e.g. some cells in the visual pathways
of the brain often have an approximately Gaussian response.

Conclusion

The Canny algorithm is adaptable to various environ-
ments. Its parameters allow it to be tailored to recognition of
edges of differing characteristics depending on the particular
requirements of a given implementation. In Canny’s original
paper, the derivation of the optimal filter led to a Finite Im-
pulse Responsefilter, which can be slow to compute in the spa-
tial domain if the amount of smoothing required is important
(the filter will have a large spatial support in that case). For this
reason, it is often suggested to use Rachid Deriche’s infinite
impulse response form of Canny’s filter (the Canny-Deriche
detector), which is recursive, and which can be computed in a
short, fixed amount of time for any desired amount of smooth-
ing. The second form is suitable for real time implementations
in FPGAs or DSPs, or very fast embedded PCs. In this context,
however, the regular recursive implementation of the Canny
operator does not give a good approximation of rotational sym-
metry and therefore gives a bias towards horizontal and vertical
edges.

As it was mentioned above, this program is intended to
be uploaded in “robots brain”, for the robot to be able to use
all functionalities of the program: scan image, process it, cre-
ate another image, save all coordinates in memory and draw
“image of edges” on paper. This is the purpose for what this
program was created.

Nodar MOMTSELIDZE, Zura SEKHNIASHVILI, Giorgi DARSALIA

46

Journal of Technical Science and Technologies; ISSN 2298-0032

References

[1] Canny Edge detector:
http://en.wikipedia.org/wiki/Canny_edge_detector

[2] 2004 Robert Fisher, Simon Perkins, Ashley Walker, Erik
Wolfart, Image processing Learning resources HIPR2 explore
with JAVA, http://homepages.inf.ed.ac.uk/rbf/HIPR2/hipr_top.
htm
Contents and Index > Canny Edge Detector

[3] 2004 Robert Fisher, Simon Perkins, Ashley Walker, Erik
Wolfart, Image processing Learning resources HIPR2 explore
with JAVA, http://homepages.inf.ed.ac.uk/rbf/HIPR2/hipr_top.
htm
Contents and Index > Gaussian Smoothing

[4] Ruye Wang 2004-09-20, Canny Edge Detection:
http://fourier.eng.hmc.edu/e161/lectures/canny/node1.html

