
Optimization of Autonomic Component Ensembles Resources

Journal of Technical Science and Technologies; ISSN 2298-0032

41

Optimization of Autonomic Component Ensembles Resources

Medhat MOUSA*

Abstract

 This paper presents a comprehensive study and a new approach for optimization of the Hardware resource, there exists some
natural probabilistic models, e.g. Poisson process, Unigram model. The suggested framework allows us to explain the inde-
pendent events across multiple sites in terms of the Software as a Service (SaaS), Self-healed and self-adapted Autonomic
Components using highly optimized, secured, and expressiveness context formal language.

Keywords: Modeling of Cloud Computing Security, Virtualization Technology, and Autonomic Computing Systems

Introduction

Cloud computing as a dynamic computing grid needs
some expressiveness and flexible formal language,
that could detect the behavioral changes of every
component, as explained in (Chakraborty, Samarjit,
2003). An alphabet is the simplest analogy of formal
language i.e. a finite set of symbols which are used to
form words in a language. An example of an alphabet
might be a set like or it cloud be a set over
E i.e.

 { }{ }, | has equal number of as and bsx a b x∈ ∗
Therefore it is possible to generate a new language by
applying some operational semantic rules on its sets
or the strings.

In (Chakraborty, 2003)there is an example of gen-
erating a new language from some regular expres-
sions by conducting some simple operations–union
(denoted by+), concatenation, and the closure op-
eration (denoted by*), to clarify the real meaning of

 the regular expression consider
the following language that consisted of , therefore we
can conclude some of the regular expression e.g. 0+1.

Related Work and Existing Techniques

In this section we discuss some of the existed tech-
niques that use normalization of the probability distri-
bution q_i. By defining the Operational Semantics of
Probabilistic Klaim (pKLAIM) “Discrete Time”, in (Ales-
sandra, 2002), for the discrete time execution models
the updated principle simulates a Global Scheduler:
At each interval, step one node is selected according
to the scheduling probabilities and executed. The re-
sult is a Discreet Time Markov Chain (DTMC) (Alfaro,
1997).

In order to update the network configuration, the
Global Scheduler has to perform the following tasks:

1. Selecting a node which could initiate a global
update, according to the scheduling probabilities,

2. Checking if the selected node can cause a glob-
al transition,

3. Executing one of the possible updates, as de-
fined in the local semantics of the node in question.

If the chosen node is unable to perform a local
transition an alternative one has to be selected.

pKLAIM Extension

As define in (Lorenzo et, al., 2009) Klaim (Kernel
Language for Agents Interaction and Mobility) is an
experimental language specifically designed to pro-
gram the Dynamic and distributed systems consisting
of several mobile components that interacts through
multiple distributed tuple spaces. Also it is important
to mention that pKlaim is based on the original Klaim,
a quantitative analysis is important always in case of
the security measures at realistic situation and spe-
cific tolerance criteria that expressing how much the
underlying infrastructure and the hosted system by its
applications is vulnerable. In particular we proposed
the Discrete Time variant; hence we express the net-
work Architecture at the local level. Meanwhile we can
use the probabilistic parallelism and choice operator,
in order to present a new adaptive approach “App/VM
Live Migration” across Multiple sites due to some acci-
dental changes likewise Virus infections or Resources
insufficiency because of (D)DoS attack.

* Ph.Dc, Faculty of Computer Technologies and Engineering, International Black Sea University, Tbilisi, Georgia.
E-mail: mmousa@ibsu.edu.ge

Medhat MOUSA
Journal of Technical Science and Technologies; ISSN 2298-0032

42

Methodology

 Process Syntax of pKlaim
As mentioned in (Alessandra, 2002) the main differ-
ence between discrete and continuous time model
is the “single step transition probability” which is re-
placed by “transition rate” in continuous time model.
Therefore, transition probabilities could be presented
in the function of time, Fig (1) shows the both process
syntax in (Discrete & continuous) time model respec-
tively.

Figure 1. Process syntax

 SCEL Syntax
Furthermore, it is important to integrate our pa-

per’s aim with Software Component Ensample Lan-
guage (SCEL), as Fig(2) shows; the principal idea of
a component is illustrated in terms of four ingredients
with considering that the Processes are used to build
up components that in turn are used to define sys-
tems. (Rocco De Nicola1, et al., 2013).

Figure 2. Shows four ingredients of the component

1. An interface publishing and making available
structural and behavioral information about the com-
ponent itself in the form of attributes. Among them,
attribute id is mandatory and is bound to the name
of the component. Notably, component names are not
required to be unique; this would allow us to easily
model replicated service components.

2. A knowledge repository managing both ap-
plication data and awareness data, together with the
specific handling mechanism. The knowledge reposi-
tory of a component stores also the whole informa-
tion provided by its interface, which therefore can be
dynamically manipulated by means of the operations
provided by the knowledge repositorie’s handling
mechanisms.

3. A set of policies regulating the interaction
between the different internal parts of the component
and the interaction of the component with the others.

4. A process P together with a set of process
definitions that can be dynamically activated. Some of
the processes in P perform local computation, while
others may coordinate processes interaction with the
knowledge repository and deal with therelated issues
to adaptation.

Finally, SYSTEMS aggregate COMPONENTS
through the composition operator.

Problem Statement

Despite the Importance of the query action in any dy-
namic distributed grid, especially in Cloud Comput-
ing based infrastructure, nevertheless, the consumed
bandwidth playing very important role, Fig(3), shows
the configured topology for Datacenter with Five VMs
with their Applications.

Figure 3. Shows Application movements across 2 Servers

In the Software Access Control Policy Language
(SACPL) environment, query process causing signifi-
cant delay especially if it is consisting of a set of sites
and VMs, as well as the installed Applications Plat-
form as a Service “PaaS”, e.g. in the proposed topol-
ogy, five running Virtual Machines under one Enabled
Complexity “EC”, to measure the potential threats at
both sites and the VM level.

Optimization of Autonomic Component Ensembles Resources

Journal of Technical Science and Technologies; ISSN 2298-0032

43

In the mentioned above scenario each SCEL “VM”
component has to perform and initiate a query action
at a periodic interval or after certain trigger, to update
its knowledge repository as well as updating
the rest of the SCEL’s knowledge repository . I.e.
25 query per certain trigger.

Some considerations have been taken into ac-
count in order to reduce the query in the SCEL envi-
ronment:

1. Each VM has to be connected by the enabled
eomplexity,

2. Unreachable VMs will be taken offilne “Iso-
lated” just in case of:

3. The VM running “y” service, it will be elimi-
nated after moving its application to another VM with
respect to the current topology as well as the health
state of this VM, otherwise there will be a new VM
will be created to host the received application accord-
ingly.

4. If there is no service at this VM, it will be elimi-
nated automatically, in order to reclaim the underlying
Hardware.

5. EC is aware of the whole infrastructure re-
garding Hardware availability at each host and the
threat levels.

Algorithm 1. Query Reduction at SCEL environemnt

Query at Work

In the tradition SCEL environment each component
has to update its knowledge regularly, here we as-
sume that most important security criteria including
Hardware (CPU, Memory) e.g. (in range 1:10)/ each,
and health state of the VM that is determined by ena-
bled complexity, e.g. (0:1) therefore:

• The un-threatened “healthy” VM, “enabled
complexity” indicates a less possibility of infection by
Virus, Malware, etc. Besides the hardware availability
counters that show normal usage of the recourse’s uti-
lization, i.e. it will not be obligated to initiate any query
process,

• The infected VM will propagate its status
among the other SCELs via Query action,

• Enabled Complexity will propose the fittest
VM, i.e. (in terms of the security level and HW avail-
ability) to the infected VM,

• The infected VM will put/migrate its App to the

elected Healthy VM,
In (I.Rodonaia et al., 2013), the “below code“ it

shows that other than ID, the interfaces and
provide the attributes “ComplexityLevel”,“CPULoad”
and “Hardware”. Stores a context information, updated
by the underlying infrastructure (usually, from the fire-
walls, gateways or special probes) and are `sensed’
by the Managed Element (ME).

The CPi where the application is running is the

SCEL component:

44

Journal of Technical Science and Technologies; ISSN 2298-0032

And is used for group-oriented communication
in the action qry (“CPiId”,?c) @ Ω . This predicate
defines the ensemble of components, which publish
in their interface’s attributes Complexity Level, CPU
Load and Hardware along with relevant values. We
assume that these attributes are provided by the inter-
face of each component and obtain dynamically up-
dated values from corresponding probes (sensors) as
a result of constant monitoring (sensing) of the com-
puting environment.

Conclusion

In this paper, we have suggested a new approach that
can be adopted in the Cloud Computing based distrib-
uted dynamic environments, also we have presented
the traditional Query ,its mechanism, and how it could
be developed using our algorithm in order to make the
SCEL components more productive.

References

Alessandra Di Pierro, Chris Hankin. (2002). Probabil-
istic KLAIM. p.1

Alfaro, L. d. (1997). formal verification of probabilistic
systems phd .

Chakraborty, S. (2003). Formal Languages and Auto-
mata Theory. Computer Engineering and Net-
works Laboratory,P. 3.

Chakraborty, S. (2003). Formal Languages and Auto-
mata Theory. P. 2.

Chakraborty, Samarjit. (2003). Formal Languages and
Automata Theory. Computer Engineering and
Networks Laboratory,P. 2.

Irakli Rodonaia, Alexander Milinikov, Medhat Mousa,
Vakhtange Rodnaia. (2013). A technique of for-
mal security modeling in autonomic cloud com-
puting environment.P. 4.

Lorenzo Bettini, Viviana Bono, Rocco De Nicola,
Gianluigi Ferrari,Daniele Gorla. (n.d.). The
Klaim Project:Theory and Practice. Global
Computing initiative,P. 1.

Peter Mell, Timothy Grance. (2011). The NIST Definition
of Cloud . Recommendations of the National In-
stitute ,P. 2.

Rocco De Nicola1, ea l. (2013, January 28). SCEL:
a Language for Autonomic Computing. P. 7.

