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Abstract 

Weinstein method of intermediate problems has been modified for a system with concentrated parameters – electrical circuits. Basis (initial) 
problem for this case of the intermediate problems method is defined. A relationship between eigenvalues (proper frequencies) of impedances 
of separate branches of the circuit and loop impedances are established. A simple technique of separating the roots of characteristic polyno-
mials is elaborated. Finite steps recurrent process of  intermediate problems of eigen values is determined. The latter leads to the important 
result conserning LC-circuit eigenvalues multiplicity, in the synthesis of circuits with a given range of eigenfrequencies by simply choosing the 
required number of elements (impedances) of the same kind in a primitive circuit. 
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Introduction
To begin with, we have to state shortly basic conceptions 
of tensorial theory of electrical circuits (Kron, 1959; Happ, 
1973) and some our previous  results connected with the 
theory (Mylnikov & Prangishvili, 2002; Milnikov, 2013; Myl-
nikov, 2008). Four types of circuits (introduced by Kron 
(Kron, 1959]) are used in the present paper: pure-loop, 
pure-node, orthogonal and primitive. The first one is a circuit 
which consists only of loops, on the contrary, a pure-node 
circuit consists only of node pairs, orthogonal circuits are 
ordinary circuits with both loops and node pairs and primi-
tive circuit is a circuit consisting of disconnected branches 
(Kron, 1959). A pure-loop circuit can be easily obtained from 
an ordinary, i.e. orthogonal circuit: if we have a k loop circuit, 
then we should shortcircuit n-k= m-1node pairs . However, in 
the case of node analysis leading to pure-node circuits, we 
are to do a dual operation: to open k loops.

In different works (Mylnikov & Prangishvili, 2002; Milnik-
ov, 2013; Mylnikov, 2008) it has been shown that to each 
circuit, one can assign two pairs of conjugate linear vector 
spaces  HLn , HLn

 and  CLn , CLn  one of which has a homologi-
cal origin, while the other one—cohomological. Four spaces 
generate two pairs of conjugate variables e, i and E, I. Also 
invariance of input (homological) and output (cohomologi-
cal) powers was proved. The latter allowed us to substanti-
ate tensorial model of multiloop electrical circuit. From this 
point of view, one can consider the mesh current method 
as the tensor form of Ohm’s law written for k-dimensional 
homological spaces HLn  and HLn , while the node voltage 
method is the tensor form of Ohm’s law written for m − 1=n-
k-dimensional cohomological spaces  CLn-k  and CLn-k . The 
kinetic (magnetic) energy of the circuit is a bilinear form 

to which there corresponds a twice covariant inductance 
(mass) tensor.  The potential (electric) energy of the circuit 
is a bilinear form to which there corresponds a twice con-
travariant capacitance (elasticity) tensor (Mylnikov & Prang-
ishvili, 2002; Milnikov, 2013; Mylnikov, 2008) .Another result 
important for the following is that to a given primitive circuit, 
one can assign the group GC of transformations C, which 
completely describes all possible kinds of pure-loop circuits 
can be obtained from the initial primitive circuit. 

Hereafter we use notation for eigenvalues 2λ ω=, which is
equal to the second power of angular frequency 2λ ω= .

Problem Formulation
Weinstein’s method of intermediate problems was devel-
oped for infinite-dimensional problems, for which it proved to 
be sufficiently effective, especially for problems connected 
with oscillations of membranes of various configurations 
(Mylnikov, 2008). However, the part of the method that was 
developed for finite-dimensional problems had no practi-
cal importance.The reason is obvious: the application of 
Weistein’s function and especially of Aronszajn’s lemma 
require the resolvent be calculated for each tested value, 
which is absolutely impossible to do in case of large (many-
loop) circuits. Another point, which is probably the main one, 
in the finitedimensional case is not clear how to use Aron-
szajn’s lemma in general, since the method of intermediate 
problems does not give any clues as to how one can con-
struct the so-called basic problem. All the mentioned prob-
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lems associated with Weinstein’s function and Aronszajn’s 
lemma have become solvable in next to no time and lead 
to new significant results if this method is modified so as 
to conform to the notions of primitive and pure-loop (pure-
node) circuits. 

Finally, we have to state that the problems connected 
with synthesis of multiloop LC- circuits with predefined res-
onance  frequencies (eigenvalues) is one of the most de-
manded in developing of different modern digital and analog 
communication devices. With this in view, various methods 
are used, but the majority of them are complicated and time 
consuming. The objective of the present paper is a pres-
entation of new approach to the problem of  synthesis of 
multiloop LC- circuits with predefined resonance  frequen-
cies based on  Midified Intermediate Problems  method 
(Milnikov, 2013; Mylnikov, 2008) and G. Kron’s conceptions 
(Kron, 1959).

Problem Solution
I.1  Determination of the Basic (Initial) Problem 
for the Intermediate Problems Method for Electri-
cal Circuits ( Milnikov, 2013)

Let us transform the initial K-loop circuit to a pure-loop circuit 
by shorting n- k node pairs. To this circuit there corresponds 
the ndimensional operator Z (n) . Moreover, we have a primi-
tive circuit, to which there corresponds also an n-dimension-
al operator Z.D, which matrix is diagonal with the diagonal    

1/ ii
iil cλ −  (i=1,2,…,n).

The matrices Z (n)  and Z D are related through\

( ) ( ) ( )n T
DZ C Z Cω ω=

(1)

where C is an n × n matrix of transformation of the initial 
primitive circuit to the connected pure-loop one.

 The inverse matrix to (1) is the resolvent oRλ  for a prim-
itive circuit with diagonal elements inversed to diagonal 
elemnts Z D : 1/ ( 1/ )ii

iil cλ −  . 

Using (1) it is easy to obtain the resolvent for Z (n) 

( ) 1 (0) 1( )n TR C R Cλ λ
− −=

(2)

We would like to emphasize the fact that (2) is in fact 
the resolvent obtained in a general form so that we need 
not to calculate it anew (i.e. to transform the matrix) for each 
tested λ   .

The eigenvalues of the diagonal operator Z D are obvi
ously equal to λi =1/( lici ) (i=1,2,…n). Among them there 
may be multiple eigenvalues too, which from the engine-
ering standpoint means that among the elements used to 
con-struct a k-loop circuit there are groups of elements 
having the sameimpendance values and the quantities 
of these groups are equal to the eigen values corresp-
onding multiplicities.

Proposition 1. All pure-loop circuits contained in the 
group GC of the initial primitive circuit possess pairwise 
equal eigenvalues equal in their turn to the eigenvalues of 
the primitive circuit.

Proof. From (2) it follows that 
Ton CRCR )det()det()det()det( 1)(1)( −−= λλ

But det C T and detC are constant values and therefore 
the respectivedeterminants are equal to zero only for equal 

λ . 

Analogously, for two arbitrary pure-loop circuits, each of 
which isobtained by means of a nonsingular transformation 
C from a givenprimitive circuit, we can write

det( ) det( ( ) )n T n
j ji i ijZ C Z C=

(3)

Zj
(n) is the impendance tensor of the i-th pure-loop circuit;  

isthe impendance tensor of the j-th pure-loop circuit Zj
(n); Cjiis 

the tensorof transformation of the basis of the i-th pure-loop 
circuit to that ofthe j-th circuit.

From (3) it follows that the equality

0)det()det()det( )(
0

)()( === nn
i

n
j ZZZ

is again fulfilled for equal λ  , Q.E.D. 

Thus, we have obtained two important results: – the re-

solvent of the operator (n)R λ  of a pure-loop circuit can be
obtained directly from (2) without transforming the matrix  

)(nZ and the eigenvalues of the initial primitive system are
equal to the eigenvalues of a pure-loop circuit or, in other 
words, the eigenfreqiencies of individual elements, by which 
the circuit is constructed, are equal to the eigenfreqiencies 
of the constructed circuit where n-k node pairs are shorted.

The above reasoning has been carried out using the 
terms of the method of loop currents. The same can also be 
done in terms of node voltages. We are omitting the consid-
eration of the case due to lack of space, but only note that in 
this case the admittance tensor nY  should be used.

Propositions 1 implies that in the method of intermedi-
ate problems we should consider as basic problems either 
a pure-loop circuit or a pure-node circuit because the re-
solvents of these problems are easily defined in a general 
form, and the eigenvalues are likewise easily calculated. As 
the basis operator we should consider the impedanceten-

sor Z (n)   of a pure-loop circuit (the admittance Y n tensor  
in the case of a pure-node circuit).Consecutive imposing 
of constraints on the pure-loop circuit generates sequence 
ofrespective intermediate operators 

Z (n−1) , Z (n−2) ,..., Z (k ) 

   Eigen values of the latter operator represent our ori-
ginal problem. 
I.2 The Weinstein function for oscillatory circuits 
(Mylnikov, 2008; Milnikov & Duisheev, 2014)

We proceed from the fact that the operator  can beobtained 
from the operator Z(n)by opening successively n-k short-cir-
cuited node pairs of a pure-loop circuit, which is equivalent 
to imposingn-k constraints.

If one number of all n loops so that fictious n-k loops 
would get thelast n-k numbers, then the opening of the j-th 
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loop obviously leads tothe constraint equation
0=ji

(4)

To this equation there corresponds the constraint vector 
pj=(0; 0; … ; 1; …, 0), where 1 is in the j-th position. Thus, 
the k-loop circuit is obtained from the corresponding pure-
loop circuit by imposing successively (or simultaneously) n-k 
constraints to which there correspond n-k mutually orthogo-
nal, unit basis constraint vectors p.

From the geometric standpoint, the process of impos-
ing r constraints corresponds to the transformation of the 
operator  to its part ,  which is  defined on the subspace of 
the space  . Now we can obtain the concrete representation 
of the part of the operator  .

Proposition 2. The operator Z(n-r) which is a part of the 
operator Z(n) and defined on the subspace n rLH −  is repre-
sented in the coordinate from as a principal submatrix1  of 
order n-r of the matrix Z(n). 

We are omitting the proof of the proposition 2 which can 
be found in (Mylnikov, 2008).

Thus, when constraints of type (4) are successively im-
posed on a pure-loop circuit, we obtain a number of inter-
mediate problems on eigenvalues for a chain of operators   

Z (n−1) , Z (n−2) ,..., Z (k )
 

each of which is in coordinate terms a principal submatrix 
(of order smaller by one) of the preceding operator:  

)()1(()()2()1( ,...,,,...,, kininnn ZZZZZ +−−−−

Similar to (1), one can write down a transformation for 
pure-node circuits

AYAY D
Tn )()()( ωω =

(1΄)

where - covariant tensor A, which connects the conductance 
tensor   of a primitive circuit with  the tensor of an orthogonal 
pure-node circuit

It has been shown that the tensors A and C are related 
by

1−= CAT  [A. Mylnikov 2008].

(5)

If the matrices A and C are divided into blocks in accord-
ance with the division of circuit variables into k loop (contra-
variant) and n-k node variables (covariant), then it turns out 
that the matrices of the tensors C and A have the following 
block structures:

knkknk AAACCC −− ==

where Ck and An-k coincide with the loop and structural matri-
ces of thecircuit.

Proposition 3.The matrices )()( ωnZ  and )()( ωnY   are 

reciprocal, i.e. )()( ωnY  is theresolventfor )()( ωnZ , and vice 
versa.

Indeed, taking into account ( ) 1)()( −= λλ YZD  and also 
equality (1) one can write 

( ) 1 1

1 1 1 ( )

( ( )) ( ( ) )
( )( ) ( ) ( )

n T
D

T T n
D D

Y A Y A
A Y A C Z C Z

λ λ

λ λ λ

− −

− − −

= =

= = =  .

Q.E.D.

Now one can determine the shape of Weinstein function 
for finite dimensional discrete system – k - loop circuits. If as 
a basis operator we take )()( ωnZ  , then by Proposition 2 its 
resolvent is )()( ωnY   and for an arbitrary LC-circuit we can 
write the Weinstein function as follows: 

        ji
n ppYW ,

)( )()( λλ = (i,j=n.n-1,…,k+1), 
(6)

where pi – a vector of imposed i-thconstraint.Performing all 
multiplication operations in (6) we obtain the determinant of 
the matrix of (n-k) order, lying at the intersection of the last 
n-k rows and columns of the matrix Y(n). This gives rise to 

Proposition 4. The Weinstein function for the LC-circuit 
described by the loop matrix Z(k)  is the determinant of a 
lower right submatrix of order (n-k) of the resolvent Y(n).The 
dual statement is also valid.

Proposition 4΄. The Weinstein function for the LC-cir-
cuit described by the node matrix   Y(n-k) is the determinant of 
an upper submatrix of order k of the resolvent Z(n).

One can easily establish a relation between these sub-
matrices.

Lemma 1. A lower right submatrix of order (n-k) of the 
resolvent Y(n) is a node conductance matrix Y(n-k) .

Indeed, rewriting (1΄) in the block form and performing 
multiplication, we have 

knD
T

knkD
T

kn

knD
T
kkD

T
k

knkDT
kn

T
kn

AYAAYA
AYAAYA

AAY
A
AY

−−−

−

−
−

=⋅⋅=

)()(
)()(

)()()(

λλ
λλ

λλ

 The block located in the right lower corner is the node 
conductance matrix Y(n-k)  by virtue of the fact that Acoin-
cides with thestructural matrix of the circuit. Q.E.D.

The dual statement is proved analogously.

Lemma 1΄. An upper left upper submatrix of order k of 
the resolvent Z(n) is a loop impendence matrix  )()( λkZ .

Propositions 4 and 4΄, Lemmas 1 and 1΄ immediately 
imply

Proposition 5. The determinant of the conductance 
node matrix of an arbitrary k-loop LC-circuit is the Weinstein 

1 A matrix located at the intersection of the first r rows and r columns is called a principal submatrix of order r of an arbitrary square matrix A 
of order n.
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function for the loop impendence matrix of this circuit, and 
vice versa.

The latter proposition establishes a deep relationship of 
the classical loop current and node potential methods with 
the operator methods of many-dimensional geometry. 
Thus, the determinant  

knD
T

kn AYA −− )(λ
is, on the one hand, the Weistein function obtained by im-
posing n-k constraints on the resolvent )()( λnY  of the op-
erator )()( λnZ  and, on the other hand, its matrix is the node 
conductance matrix of the considered circuit. Conversely, if 
the circuit is considered in terms of node analysis, then the 
Weinsten function kD

T
k CZC )(λ  obtained byimposing k con-

straints on the resolvent )()( λnZ  of the operator )()( λnY  is 
the loop resistance matrix of the analyzed circuit. 

I.3 Roots Separation and Multiplicity (Mylnikov, 2008)

It is obvious that when i constraints are imposed on a pure 
loop circuit we obtain new eigenvalues, which allows us to 
introduce

Definition 1. Eigenvalues of the base oscillatory 
system are called eigenvalues of zeroth order (they cor-
respond to the operator  )()( λnZ , while eigenvalues ob-
tained by imposing i constraints on a pure loop circuit 
(they correspond to the operator )()( λinZ − ) are called 
eigenvalues of i-th order.

It is obvious that in the light of the introduced ter-
minology the eigenvalues of the considered k-loop 
circuit are eigenvalues of n-k-th order (they corre-
spond to the operator )(λkZ . Thus, to each k-loop 
circuit there correspond n-k series of eigenvalues   

)()(
1

)1(
1

)1(
1

)()(
1 ,...,;...,...,;,..., kn

k
knn

n
nn

n
n −−−

−
− λλλλλλ

(the last n-k-th series consisting of eigenvalues in the usual 
sense)

Note that eigenvalues of zeroth order )()(
1 ,..., n

n
n λλ  are 

in fact eigenvalues of individual impedances that make up a 
k-loop circuit and therefore in the general case the notion of 
an eigenvalue of zero order does not coincide with the no-
tion of a partial frequency. However eigenvaleus of individu-
al impedances are partial frequencies for a pure loop circuit.

Also note that the presence of multiple eigenvalues of 
zeroth order testifies to the existence of groups of imped-
ances of the same kind in a primitive circuit, the number of 
elements of each group being equal to the corresponding 
multiplicity.

Using Rayleigh’ theorem one can prove

Proposition 6. The eigenvalues of the operator  

)()1( λ−iZ    separate the eigenvalues of the operator
)()( λiZ .

Indeed, the operator   is obtained from the operator by 
imposing one constraint (by opening one fictious loop). By 
Rayleigh’s theorem this means that the eigenvalue of both 
operators satisfy inequalities

)(
1

)1()( in
j

in
j

in
j

−
+

+−− ≤≤ λλλ (7)
Q.E.D.

From the Proposition 6 it follows that eigenvalue of a 
k-loop circuit (eigenvales of order n- k) and eigenvalues of 
the corresponding pure-loop circuit (eigenvalues of zeroth 
order) are related by inequalities (this case corresponds to 
imposing simultaneously or searially k constraints)

)(
1

)()( n
j

kn
j

n
j =

− ≤≤ λλλ (8)

Inequalities (7) and (8) provide a simple technique of 
separating the roots of characteristic polynomials of oper-
aors )()( λiZ , which enables us to construct a simple ef-
fectivealgorithm of defining a full range of eigenvalues of an 
arbitrary LC-circuit with a great number of degrees of free-
dom (with a great numberof loops).

It should be noted that, as different from the traditional 
approach consisting in attempts to connect eigenfrequen-
cies and partial ones, inequalities (7), (8) and the expres-
sion obtained for a Weinstein function (Proposition 3) make 
it possible to connect eigenfrequencies of individual imped-
ances with eigenfrequencies of a k-loop circuit.

A question naturally arises what happens to eigenval-
ues in passing from the operator )()( λiZ   to the operator 

)()1( λ−iZ  . An answer is provided by the Aronszajn’s lemma: 
when one constraint is imposed, the eigenvalue either may 
be preserved (and even its multiplicity may increase) or 
vanish (the latter corresponds to the case where the initial 
multiplicity equal to one decreases by one). Thisreasoning 
leads to

Definition 2. An eigenvalue of zeroth order is called 
i-conservative if it is preserved when i constraints are im-
posed and vanisheswhen i + 1 constraints are imposed. An 
eigenvalue of zeroth order )(n

jλ  is called conservative if it is 
preserved when n-k constraints areimposed, i.e. it is an ei-
genvalue of both a pure loop circuit and a finitek-loop circuit.

A corollaryof the definition 2 is

Proposition 7. Eigenvalues of zero-th order of a pure 
loop circuit (of a base oscillatory system), the multiplicity m 
of which is greater than or equal to the number of node pairs 
in a k-loop circuit (to thenumber n-k of fictious loops), are 
conservative.

The proof of the proposition is almost obvious, and we 
omit it.

Proposition 7, seemingly so simple, proves to be rath-
er effective, since when a primitive circuit has a sufficiently 
great number m of equal impedance (recall that their number 
is equal to the multiplicity of an eigenvalue of zeroth order), 
there is no need to calculate the corresponding eigenvalue 
of a k-loop circuit – it is enough only to verify the fulfilment of 
a simple inequality m > (n-k). The latter circumstance can be 
used in the synthesis of circuits with a given range of eigen-
frequencies by simply choosing the required number of ele-
ments (impedances) of the same kind in a primitive circuit.

Conclusion
Weistain method of intermediate problems has been modi-
fied for a system with concentrated parameters – electrical 
circuits. Basis (initial) problem is defined as pure-loop (pure-
node) circuit. 
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A relationship between eigenvalues (proper frequen-
cies) of impedances of separate branches of the circuit 
and loop impedances is established. A concrete forms for 
resolvents of circuit operators and corresponding Weinstein 
functions  are  obtained: the determinant of the conductance 
node matrix of an arbitrary k-loop LC-circuit is the Weinstein 
function for the loop impendance matrix of this circuit, and 
vice versa. 

A simple technique of separating the roots of charac-
teristic polynomials is elaborated. Finite steps recurrent 
process of  intermediate problems of eigen values is deter-
mined. The latter leads to the important result conserning 
LC-circuit eigenvalues multiplicity, in the synthesis of circuits 
with a given range of eigenfrequencies by simply choosing 
the required number of elements (impedances) of the same 
kind in a primitive circuit.
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