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Abstract 

The paper proposes a new technique for detecting malware threats in autonomic component ensembles. The technique is based on the statis-
tic complexity metrics, which relates objects to random variables and (unlike other complexity measures considering objects as individual sym-
bol strings) are ensemble based. This transforms the classic problem of assessing the complexity of an object into the realm of statistics. The 
proposed technique requires the implementation of the process X (which generates ‘healthy’ flows containing no malware threats) and objects 
generated  by the actual (possible infected) process Y. The component flows files are used as objects of the processes X and Y. The result of 
the proposed procedure gives us the distribution of probabilities of malware infection among autonomic components. Quantitative verification 
techniques are implemented within PRISM, a probabilistic model checker, which provides direct support for DTMCs, MDPs and CTMCs. The 
distribution of malware threats probabilities, obtained by the above-described procedure serves as a starting point for formal reasoning about 
the behavior of the Autonomic components ensembles. 

Keywords: autonomic ensemble, complexity measure, statistic complexity, traffic flows, malware, Markov chains, quantitative verification.

Introduction
The problem of anomaly detection in autonomic component 
ensembles was considered by Prangishvili et al. (2013, 
2014), where the following problem was set. A singleton ap-
plication currently runs on one of the VMs at an Datacenter.  
During the session the application experiences consistently 
high CPU load. This increase may be caused either by le-
gitimate traffic overload or by coordinated attacks (DDOS) 
launched against the PaaS provider. The latter might be 
wrongly assumed to be legitimate requests and resources 
would be scaled up to handle them. This would result in an 
increase in the cost of running the application (because a 
provider will be charged by these extra resources) as well 
as in violation of SLA (due to increased response times). 
Hence, it is necessary to distinguish between these two 
cases, the earlier this distinction is made, the higher is the 
degree of protection of the application from failure and poor 
performance. To provide this protection, the following secu-
rity measures were suggested. The traffic flows through the 
VMi had to be analyzed using Kolmogorov complexity met-
rics. During the session the constant monitoring of the metric 
(by the special probe implemented in the separate module), 
along with measure of CPU load and available memory size 
was being executed. If the traffic satisfied some pre-formu-
lated criteria (indicated that there exist serious DDOS attack 
threats) then the application rapidly migrated to some other 
VMj. 

The technique described by (Prangishvili et al., 2013, 

2014) implemented Kolmogorov complexity metrics to re-
veal the possible malware attacks and  had to deal with  only 
with DDOS attacks. Despite its usefulness, Kolmogorov 
complexity does not capture the intuitive notion of the com-
plexity very well. For example, random strings without any 
regularities , say that , strings that are constructed bitwise by 
repeated tosses of a fair coin, have very large Kolmogorov 
complexity. However, those strings are not “complex” from 
an intuitive point of view — those strings are completely ran-
dom and do not carry any interesting structure at all. Many 
approaches have been suggested to define some complexity 
measures that are closer to the intuitive notion of complexity 
and overcome the difficulties of Kolmogorov complexity.  For 
example, Kolmogorov complexity is based on algorithmic 
information theory considering objects as individual symbol 
strings, whereas the measures effective measure complex-
ity (EMC) (Grassberger, 1986), excess entropy (Crutchfield 
et al., 1983), predictive information (Bialek et al., 2001)), 
etc., relate objects to random variables and are ensemble 
(that is, set of interrelated objects –symbol strings)  based. 

The Kolmogorov complexity measures M  assigns a 
complexity value to each individual object  x′   under  con-
sideration.  Let us denote it as  ( )MC x′  . It is assumed that
x′  corresponds to a string sequence of a certain length

and its components assume values from a certain domain. 
In  (Feldman et.al.,1997), (Ziv Bar-Yossef et al, 2003),  (Em-
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mert-Streib, 2010) statistic complexity that is not only dif-
ferent to all other complexity measures introduced so far, 
but also connects directly to statistics, specifically, to statisti-
cal inference, was introduced. More precisely, a complexity 
measure with the following properties is introduced. First, 
the measure is bivariate comparing two objects, correspond-
ing to the pattern generating processes, on the basis of the  
normalized compression distance(NCD) (Cilibrasi et al,. 
2005), (Terwijn et al, 2011 )  with each other:    

( ) min{ }( , )
max{ ( ), ( )}

C xy C(x),C(y)NCD x y
C x C y

−
=

where  C (x)  denotes the compression size of string x 
and C (xy) the compression size of the concatenated stings 
x and y.

Second, this measure provides the quantification of an 
error that could have encountered by comparing samples 
of finite size from the underlying processes. Hence, the sta-
tistic complexity provides a statistical quantification of the 
statement ‘X that is similarly complex as Y ’. This implies that 
a fundamental complexity measure needs to be bivariate, 
C(X, Y), instead of univariate comparing the two processes 
X and Y.

Next, the desirable property of any complexity measure 
is that a complexity measure should quantify the uncertainty 
of the complexity value. As motivation for this property we 
just want to mention that there is a crucial difference be-
tween an observed  object x′  and its generating process
X. If the complexity of X should be assessed, based on the 
observation  x′  only, this assessment may be erroneous.
This error may stem from the limited (finite) size of obser-
vations. Also, the possibility of measurement errors would 
be another source of wrong  assessment. Based on these 
considerations, the statistic complexity measure, suggested 
by (Emmert-Streib (2010)  is defined by the following pro-
cedure:

1. Estimate the empirical distribution function

ˆ
XXF  of the normalized compression distance from  n1
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from objects x′   and x′′  of size  m  generated  by process
X (here ‘ 


’ means ‘is generated by X’)

2. Estimate the empirical distribution function ˆ
XYF  of

the normalized compression distance from  n2 ,
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from objects  x′  and y′  of size  m  generated  by two dif-
ferent processes  X  and  Y.   

3. Determine

, ,
ˆ ˆsup ( ) ( )x X X X YT F x F x= −

and ( )p Prob T t= ≤ .

4. Define
1 2

1 2, ,( , | , , , , ):
S

n n
X X X YC S S X Y m n n p=

as statistic  complexity.

This procedure corresponds to a two-sided, two-sample 
Kolmogorov-Smirnov (KS) test based on the normalized 
compression distance (Cilibrasi et al., 2005) obtaining the 
distances among observed objects.

The statistic complexity corresponds to the p-value of 
the underlying null hypotheses,   XYXX FFH =:0   ,  and, 
hence, assumes values in [0,1].  The null hypothesis is a 
statement about the null distribution of the test statistic 

, ,
ˆ ˆsup ( ) ( )x X X X YT F x F x= −

and because the distribution functions are based on 
the normalized compression distances among objects  x′
and x′′ , drawn from the processes X and Y. This leads to a
statement about the distribution of normalized compression 
distances. Hence, verbally, H0 can be phrased as “on aver-
age, the compression distance of objects from  X to objects 
from Y equals the compression distance of the objects only 
taken from X”.  If the alternative hypothesis 1 : XX XYH F F≠  is
true, this equality does no longer hold implying differences in 
the underlying processes X and Y, leading to the differences 
in the NCDs.

Applied to the problem of finding malware threats in 
the flows between autonomic components CPi (Prangishvili 
et al., 2013, Prangishvili et al., 2014) the above procedure 
will look as follows. For each autonomic component (AC) of 
the autonomic-component ensembles (ACEs) the process-
es  X and  Y  are  considered as the processes generating 
objects  represented in the form of strings. The strings, in 
turn, represent traffic flows through these autonomic com-
ponents. The specific ways of how flows are transformed 
into strings are considered later in the paper. The process 
X (‘training process’) is the process generating flows in the 
conditions when there are no malware threats. So, objects 
(strings) generated by the process X are ‘healthy’ (they do 
not contain any patterns of malware). These strings have to 
be generated preliminary (before actual workload on an au-
tonomic components ensemble). Some fractions of objects 
(string) have to be generated for the situation with unusual 
(but not malicious) behavior. For randomly taken pairs x′
and x ′′  (the amount of such pairs is n1) of the generated
strings the metric NCD( x′  , x ′′   ) is calculated. The size of
samples n1   has to be sufficient to account for  various pos-
sible situations  and conditions that may occur in the specific 
autonomic ensemble under consideration. Then the empiri-

cal distribution function ˆ
XXF   is being built and stored  in

the specific place.

When the ensemble starts actual operation (receives 
workload), the process Y (‘production process’) generates 
objects (strings) y′ , which  represent actual  current traf-
fic between ensemble’s components. Some of these objects 
may contain malware patterns. The sample of the size n2 of 
objects  x′   (generated preliminary by the ‘training process’ 
X ) and objects   is being created and the metric  NCD (
x′  ,  y′ ) is calculated for each pair.  Then the empirical
distribution function ˆ

XYF  is being built. Now, by applying the
steps 3 and 4 of  the above procedure,  the values of the 
statistic complexity for each autonomic component  can be  
computed.

The obtained numerical value of the statistic complex-
ity can be interpreted in the following sense: in the current 
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conditions the flows of packets through the given autonomic 
component cannot be regarded as complex flows (with the 
probability equal to p ). That is, the flows may contain some 
patterns (indicating the possible presence of some malware 
threats) with the probability p.

It should be pointed out that in production conditions 
(when the ensemble is under actual workload) the sam-
ple size n2  cannot be determined  in advance. This size 
depends on the actual working conditions: traffic intensity, 
frequency of creation of objects (strings), actual hardware 
indices (CPU load, available memory, etc.). As a rule, the 
number n2   is less than the number n1. This fact can some-
what decrease the precision of the metric, but it requires 
additional technical consideration.  In general, the statistic 
complexity has the very desirable property that the power 

reaches asymptotically 1 when ∞→1n   and ∞→2n . 
This means, for infinite many observations the error of the 
test to falsely accept the null hypotheses when in fact the 
alternative is true and becomes zero. Formally, this property 

can be stated as 0→p  for ∞→1n   and ∞→2n .

Finally, it should be noted that despite the fact that sta-
tistic complexity is a statistical test, it  borrows  part of its 
strength from the NCD  and, respectively,  Kolmogorov com-
plexity on which this is based on. Hence, it unites various 
properties from very different concepts.

Application of statistic complexity to auto-
nomic components ensembles
In the proposed approach, to anomaly detection in auto-
nomic component ensembles, an attempt  to deal with the 
wide range of malware threats  has been made (unlike the 
techniques described above and in (Prangishvili et al., 2013, 
Prangishvili et al., 2014), which  had to deal  only with DDOS 
attacks).Autonomic cloud computing datacenters can be 
considered  as autonomic-component ensembles (ACEs)  
and be represented by constructions of  SCEL (Software 
Component Ensemble Language), a kernel language for 
programming autonomic computing systems (Prangishvili et 
al., 2013), (ASCENS, 2010), (De Nicola R et al., 2013). Each 
(virtual) machine is running one instance of the Cloud Plat-
form called Cloud Platform instance (CPi). Each CPi is con-
sidered to be a service component. Multiple CPs communi-
cate over the Internet (IP ptotocol), thus forming a cloud and 
within this cloud one or more service component ensembles. 
The notions of autonomic components (ACs) and autonom-
ic-component ensembles (ACEs) (ASCENS, 2010), (De 
Nicola R. et al., 2013) have been put forward as a means 
to structure a system into well understood, independent and 
distributed building blocks that interact in specified ways.

The process part of a component (Fig.1) is split into an 
autonomic manager controlling execution of a managed el-
ement. The autonomic manager monitors the state of the 
component, as well as the execution context, and identi-
fies relevant changes that may affect the achievement of its 
goals or the fulfillment of its requirements. It also plans adap-
tations in order to meet the new functional or non-functional 
requirements, executes them, and monitors that its goals 
are achieved, possibly without any interruption. A managed 
element can be seen as an empty “executor” which retrieves 
from the knowledge repository the process implementing a 
required functionality id and bounds it to a process variable 
Z, sends the retrieved process for execution and waits until 
it terminates. Also actual parameters for the process to be 
executed can be stored as knowledge items and retrieved 
by the executor (or by the process itself) when needed.

Figure 1. Functional description of a component

In our approach    the notions of   netflows, their in-
formational-theoretical metrics and components’ autonomic 
manager are essentially leveraged. A network flow can be 
defined in many ways. In a general sense, a flow is a series 
of packets with some attribute(s) in common. Each packet 
that is forwarded within a router or switch is examined for a 
set of IP packet attributes. These attributes are the IP pack-
et identity or fingerprint of the packet and determine if the 
packet is unique or similar to the other packets. All packets 
with the same source/destination IP address, source/des-
tination ports, protocol interface, and class of service are 
grouped into a flow and then packets and bytes are labeled. 
This methodology of fingerprinting or determining a flow is 
scalable because a large amount of network information is 
condensed into a database of netflow information called the 
netflow cache.

Figure 2. Interaction between netflow devices and autonomic components
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A netflow-enabled device (netflow exporter: router or 
switch) (see the Fig.2) sends to the netflow collector single 
flow as soon as the relative connection expires. This can 
happen  1) when TCP connection reaches the end of the 
byte stream (FIN flag or RST flag) are set; 2) when a flow 
is idle for a specific timeout; 3) if a connection exceeds long 
live terms (30 minutes by default). 

Packets captured by the netflow collector are stored to 
a flow storage. In our approach the duration of each flow’s 
formation time is unknown in advance and actually is de-
fined by the relevant collectors  on the basis of the selected  
connection expiration time criteria.

Flows accumulated at the flow storage are then sub-
divided into component flows. That is, flows which have 
the component’s IP address as a destination address are 
grouped and sent to the corresponding component (more 
exactly, to the autonomic manager of a component - these 
flows are marked with blue arrows in the Fig.2).

After receiving their destined flows, the  component’s 
autonomic manager can start the processing in order to re-
veal the abnormal behavior of flows in accordance with the 
following  technique.

Application for collecting and processing NetFlow statis-
tics are defined below (Fig.3).

Figure 3. Components of the NetFlow system for analysis of the statistics

 
Once the collector populates the raw file, the file is 

passed on to the second component in the system, which is 
called an aggregator. The aggregator receives the file from 
the collector and processes it using predefined information 
from the database. The data thus processed (aggregated) is 
stored in the database. The user interface is a web applica-
tion that enables us to obtain information on the status of the 
network, based on the data aggregated in the database. If it 
is necessary to get more detailed information about a spe-
cific communication, the user may open the relevant raw file 
via the web and filter it according to the desired criteria. The 
location of the device collecting NetFlow statistics depends 
on the architecture of the network itself. The amount of Net-
Flow information exported by network devices is directly 
dependent on the amount of traffic passing through that de-
vice (exporter). Experience has shown that the amount of 
NetFlow traffic does not exceed 1% of the total amount of 
traffic through the network, so the “distance” between the 
server (collector) and the network device exporting the data 
(exporter) is not relevant. The accessibility and the security 

of the server are the more important parameters.

In the proposed approach the different files with the 
particular titles (relevant to the concrete SCPi‘s IP ad-
dresses) to store component flows  are used. For exam-
ple, for the component flow  to the SCPi with IP address 
172.16.1.86,  occurred on  2014/03/16 at 15:00,  the files 
with titles  F’171.16.1.86’-2014-03-10-15-00.bin  and  the 
F’171.16.1.86’-2014-03-10-15-00.zip  will be created. If we 
look at known threats in data networks from point of unwant-
ed traffic, we can separate the following groups (Ekmanis, 
2013): 

1. Denial of service attacks. 

2. Port scans and remote vulnerability searching and 
virus spread. 

3. P2P files exchange networks. 

4. Email spam and web popup. 

5. Open resources misuse (open DNS, open mail relay, 
open proxy, Trojan horse, etc.)

In our approach we observe the following traffic flow at-
tributes (Kołaczek,  Juszczyszyn, 2008):

• Source/destination IP address and port number

To measure changes in IP address and port number 
space we observe a value of Shannon entropy related to 
these attributes (entropy is used to capture the degree of 
dispersal or concentration of the distributions for traffic at-
tributes). Entropy values are calculated for separate com-
ponent flows files (obtained by using the utility nfdump). Dif-
ferent AMs (Autonomic Manager) use various time periods 
length (see connection expiration time criteria above). The 
following network variables are used for each component 
flows files: entropy of source IP address, entropy of destina-
tion IP address, entropy of destination port number, entropy 
of source port number. Duration attributes of each compo-
nent flow time are different and depend on the traffic con-
ditions and selected  connection expiration time criteria 
 

• Number of bytes and packets

These values are: bytes received by a host, bytes sent 
by a host, packets received by a host, packets sent by a 
host. Again, duration attributes of each component flow files 
are different.

• TCP flags

The attribute TCP_FLAG - a difference between num-
ber of SYN packets sent and RST and FIN packets received 
- is measured in the proposed approach. In normal condi-
tions, in long time observation we should get the mean value 
of TCP_FLAG near zero. Intrusive actions like system scan-
ning, DoS attacks may cause the temporal distortion of the 
mean value of TCP_FLAG.

• Duration of the connection

During various types of attacks, this value will be affect-
ed and so an anomaly may be detected. For example, worm 
infection will generate a large number of connections with 
similar duration. We simply use the value of connections’ 
duration attribute contained in the given component flow file.   

• Communication Patterns

Fan-in is the number of nodes that originate data ex-
change with the current CPi, while Fan-out is the number of 
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hosts to which CPi initiates conversations. The above pat-
terns are invariant during most time of normal system activ-
ity or change in a predictive way. But while attack appears 
they will change significantly.

As one can see, the component flows files contain the 
same volume of information (they contain the same amount 
of attributes of the same size). Hence, we can assume that 
the size m of a component flow file represents the object 
(in terms of the statistic complexity procedure)  of size m.  
In general, component flows files are regarded as objects     

, , ,.........x x x′ ′′ ′′′  generated by the process X (‘training 
process’) and , , .............,y y y′ ′′ ′′′  objects generated  by
the process Y (‘production process’).

As it was described, the proposed procedure requires 
implementation of the ‘training  process’  X   (which gener-
ates ‘healthy’ flows containing  no  malware threats) before  
starting  real ‘production‘ (real-time) process Y. In order to 
decrease overheads, this process is executed just once with  
as large value of the sample size   n1  as it is possible. The 

obtained results (the empirical distribution function ˆ
XXF  ) is

stored to each CPi which can run applications subsequently. 
When applications are executed on the CPs, the objects  

, , .............,y y y′ ′′ ′′′  (corresponding component flows 
files) are created and the empirical distribution functions         
ˆ

XYF  are calculated on each CPi .  Then, according to the
steps 3 and 4 of the procedure, the value of statistic com-
plexity for each autonomic component is calculated.

The result of the proposed procedure gives us the dis-
tribution of probabilities of malware infection among auto-
nomic components of the datacenter.

To estimate the statistic complexity’s value, which prac-
tically indicates real malware threat, numerous simulation 
experiments were carried out. The well-known simulation 
tool CloudSim - a framework for modeling and simulation 
of cloud computing infrastructures and services – has been 
used. As a result of simulation experiments, we determined 
that the statistic complexity’s value less than  0.25 can be 
practically regarded as serious malware threat. In this con-
dition the immediate migration of the application from the 
VM (where the application is being run currently) to another 
VM (which is to be selected by using the ensemble’s com-
ponents autonomic managers’ knowledge base and issuing 
the special SCEL statement qry) is required.

It should be pointed out that detection of malware 
threats and consequent migration are being executed in 
real-time scale and thus minimize damage from possible 
malware threats. This also   contributes to maintaining the 
required SLA.

The time of migration must be taken into account when 
determining the response time. In general, streams of re-
quests generated by each client (application) may be de-
composed into a number of different VMs. In case of more 
than one VM serving the ith client, requests are assigned 
probabilistically, i.e.,  

ijα   portion of the incoming requests 
are forwarded to the jth server (host of a VM) for execution.

The exponential distribution function is used to model 
the service time of the clients in this system. Based on this 
model, the response time distribution of a VM (placed on 
server j) is an exponential distribution with mean:

 1
ij p

j ij ij ij i

R
C

=
φ µ −α λ (1)

where µij  denotes the service rate of the i-th client on the  
j-th server when a unit of processing capacity is allocated to 
the VM of this client. The VM unit is defined as the basic unit 
of virtual resource, which is associated with a set of physical 
resources such as CPU time, main memory, storage space, 
electricity etc. In real cloud systems, any virtual resource a 
customer can apply should be a multiple of the VM unit. 

Migrating a VM between servers causes a downtime 
in the client’s application. Duration of the downtime is re-
lated to the migration technique used in the datacenter. 
The downtime also is the function of the link speed and VM 
memory size.

Let us assume that an application i  had to migrate  ni 
times during its execution cycle.   We introduce the following 
notations:

 ni  - amount  of migration of the i-th application during 
its execution cycle;

mk - the number (index)  of VM (CP) on which the ap-
plication runs in k-th migration period;

ipSC  - the value of the statistic complexity obtained
for the i-th application running on the  p-th VM in the given 
time period

ijR  - see (1)

Then the formula (1) must be updated by adding the 
term representing  the  expected  downtime of the VMij:

1

1

0

( ( ( )) )
i

k k k

im i

n

im im im
k

R if n

SC R DT LinkSpeed otherwise
=

 =



∗ +

∑

The obtained estimation of response times is much 
closer to the actual response times (observed in real opera-
tional conditions) and thereby contributes to maintaining the 
required SLA.

Conclusions and future works
In the paper we presented a new technique for detecting 
malware threats in autonomic component ensembles. The 
technique is  based on the statistic complexity metrics. Un-
like the Kolmogorov complexity, which is based on algo-
rithmic information theory considering objects as individual 
symbol strings, the statistic complexity relates objects to 
random variables and are ensemble based.  It is a bivariate 
measure that compares two objects, corresponding to the 
pattern generating processes, on the basis of the normal-
ized compression distance with each other. Besides, this 
measure provides the quantification of an error that could 
have been encountered by comparing samples of finite size 
from the underlying processes. The approach transforms 
the classic problem of assessing the complexity of an object 
into the realm of statistics. This may open a wider applicabil-
ity of this complexity measure to diverse application areas. 
In particular, the statistic complexity is applied to the prob-
lem of detecting malware threats in  autonomic component 
ensembles. The proposed procedure requires implementa-
tion of the ‘training  process’  X   (which generates  ‘healthy’ 
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flows containing  no  malware threats) and objects   gener-
ated  by the actual (possible infected) process Y (‘production 
process’). The component flows files are used as objects 
of the processes X and Y. The result of the proposed pro-
cedure gives us the distribution of probabilities of malware 
infection among autonomic components of the datacenter. 
The proposed procedure of detecting malware threats and 
consequent migration are being executed in real-time scale 
and thus minimizes damage from possible malware threats. 
This also   contributes to maintaining the required SLA.

Quantitative verification based on the sta-
tistic complexity estimates
Model checking represents a formal technique for verifying 
whether a system satisfies its specification. The technique 
involves building a mathematically-based model of the sys-
tem behavior and checking that system properties specified 
formally in a temporal logic hold within this model. The result 
is based on an exhaustive analysis of the state space of the 
considered model - a characteristic that sets model checking 
apart from complementary techniques such as testing and 
simulation.

Quantitative verification techniques (Kwiatkowska, 
2013), (Calinescu et al., 2008) are  implemented within 
PRISM, a probabilistic model checker, which provides direct 
support for discrete-time Markov chains(DTMCs), Markov 
decision processes (MDPs) and continuous- time Markov 
chains  (CTMCs). 

The discrete-time Markov chain (DTMC), is defined by a 
set of states S and a transition proba-bility matrix P: S × S →  
[0, 1], where P(s, s’) is the probability of making a transition 
from one state s to another state s’. Markov decision pro-
cesses (MDPs) extend DTMCs by allowing both probabilistic 
and nondeterministic behavior. More formally, in any state 
there is a nondeterministic choice between anumber of dis-
crete probability distributions over states. Non-determinism 
enables the modeling of asynchronous parallel composition 
of probabilistic systems. It also permits under-specification 
of certain aspects of a system. A continuous-time Markov 
chain (CTMC), on the other hand, is defined by a set of 
states S and a transition rate matrix R : S × S → IR≥0, where 
R(s, s’) is the rate of making a transition from state s to s’. 
The interpretation is that the probability of moving from state 
s’ within t time units (for positive, real-valued t) is ( , ')1 R s s te− ⋅−  

MDP properties are typically expressed in temporal log-
ic PCTL (Probabilistic Computation Tree Logic). Examples 
of PCTL properties are: “What is the maximum probability 
over all possible strategies (variants of processes progress) 
of migration of an application being executed on VMi?” or 
“What is the minimum probability over all possible strate-
gies, of SLA violation within 10 time steps? “ or “What is the 
long-time  probability of the ACE’s  being operated without 
SLA violation at least 0.99?” and etc. The distribution of mal-
ware threats probabilities obtained by the above-described 
procedure, serves as a starting point for formal reasoning 
about the behavior of the ACEs. 

Quantitative verification techniques is implemented 
within PRISM, a probabilistic model checker developed at 
the Universities of Birmingham and Oxford. PRISM provides 
the direct support for DTMCs, MDPs and CTMCs. Two key 
aspects of autonomous cloud computing ensembles are: 
autonomous behavior and adaptivity. Each aspect can be 
explored by the use of PRISM. The temporal PCTL to spec-
ify autonomous behavior goals can be employed and the 
above goal may be as follows: “What is the probability that 
the autonomous ensemble will remain in safe (from the SLA 

requirements’ standpoints) state until finishing all assigned 
tasks successfully?”.The problem can be stated as follows.  
Given a PCTL formula Φ that specifies the mission goal de-
termines a control strategy that optimizes the probability of 
satisfying Φ. Clearly, this problem can be solved by applying 
quantitative verification, namely, computing the minimum/
maximum probability or expectation, and then synthesizing 
the optimal strategy.

Autonomous cloud ensembles dynamically adapt be-
haviors to the changing requirements and on texts. It has 
been argued that the need to continuously provide reliabil-
ity, dependability and performance guarantees for adaptive 
systems calls for quantitative runtime verification. This is 
different from offline quantitative verification performed at 
the design stage where a model is developed and analyzed 
pre-deployment in order to improve the design. Runtime 
verification, in contrast, is invoked as the system is being 
executed, intercepting and steering its execution to ensure 
that given requirements are continuously satisfied in spite of 
adaptation. The framework proceeds autonomically, repeat-
edly invoking the monitoring, analysis, planning and execu-
tion stages as follows:

- monitor the reliability, workload and  response time of 
services, to derive an operational model; 

- analyze performance and QoS requirements, utilizing 
the values of parameters obtained from the monitoring 
phase;

- plan adaptation of the system based on the results of 
analysis, which may involve changing the resource al-
location or selection of optimal service;

- execute the adaptation of the system

The models used are DTMCs and CTMCs, and the fol-
lowing are example requirements:

- P≤0.20 [F failed alarm]-“the probability that at an alarm 
(need to migrate to another VM due to the high prob-
ability of malware threat) failure  ever occurs during the 
lifetime of the system is less than 0.20” (PCTL property);

- R≤0.05 [F[service  #35 being executed] dropped] -“the probability of 
a change VM request being dropped due to the request 
queue being full during a day of operation is less than 
0.05” (CSL property).

The QoS framework implements the analysis stage us-
ing quantitative verification with PRISM. This involves ex-
ecuting PRISM verification tasks at run-time. 

It is necessary to point out again that the DTMC, CTMC 
and MDP procedures run within PRISM by using the distri-
bution of malware threats probabilities obtained by the sta-
tistic complexity procedure which serves as a starting point 
for formal reasoning about the behavior of the ACEs. 

In the future work, we plan to develop a hybrid tech-
nique which combines aspects of symbolic and explicit ap-
proaches to overcome some performance problems. We are 
planning to add a MTBDDs (multi-terminal binary decision 
diagrams) to a purely symbolic framework of PRISM.
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