
41

Journal of Technical Science and Technologies; ISSN 2298-0032; Volume 4, Issue 1, 2015

Statistic complexity metrics as a basis for formal
probabilistic model checking

Irakli RODONAIA*
Vakhtang RODONAIA **

Abstract

The paper proposes a new technique for detecting malware threats in autonomic component ensembles. The technique is based on the statis-
tic complexity metrics, which relates objects to random variables and (unlike other complexity measures considering objects as individual sym-
bol strings) are ensemble based. This transforms the classic problem of assessing the complexity of an object into the realm of statistics. The
proposed technique requires the implementation of the process X (which generates ‘healthy’ flows containing no malware threats) and objects
generated by the actual (possible infected) process Y. The component flows files are used as objects of the processes X and Y. The result of
the proposed procedure gives us the distribution of probabilities of malware infection among autonomic components. Quantitative verification
techniques are implemented within PRISM, a probabilistic model checker, which provides direct support for DTMCs, MDPs and CTMCs. The
distribution of malware threats probabilities, obtained by the above-described procedure serves as a starting point for formal reasoning about
the behavior of the Autonomic components ensembles.

Keywords: autonomic ensemble, complexity measure, statistic complexity, traffic flows, malware, Markov chains, quantitative verification.

Introduction
The problem of anomaly detection in autonomic component
ensembles was considered by Prangishvili et al. (2013,
2014), where the following problem was set. A singleton ap-
plication currently runs on one of the VMs at an Datacenter.
During the session the application experiences consistently
high CPU load. This increase may be caused either by le-
gitimate traffic overload or by coordinated attacks (DDOS)
launched against the PaaS provider. The latter might be
wrongly assumed to be legitimate requests and resources
would be scaled up to handle them. This would result in an
increase in the cost of running the application (because a
provider will be charged by these extra resources) as well
as in violation of SLA (due to increased response times).
Hence, it is necessary to distinguish between these two
cases, the earlier this distinction is made, the higher is the
degree of protection of the application from failure and poor
performance. To provide this protection, the following secu-
rity measures were suggested. The traffic flows through the
VMi had to be analyzed using Kolmogorov complexity met-
rics. During the session the constant monitoring of the metric
(by the special probe implemented in the separate module),
along with measure of CPU load and available memory size
was being executed. If the traffic satisfied some pre-formu-
lated criteria (indicated that there exist serious DDOS attack
threats) then the application rapidly migrated to some other
VMj.

The technique described by (Prangishvili et al., 2013,

2014) implemented Kolmogorov complexity metrics to re-
veal the possible malware attacks and had to deal with only
with DDOS attacks. Despite its usefulness, Kolmogorov
complexity does not capture the intuitive notion of the com-
plexity very well. For example, random strings without any
regularities , say that , strings that are constructed bitwise by
repeated tosses of a fair coin, have very large Kolmogorov
complexity. However, those strings are not “complex” from
an intuitive point of view — those strings are completely ran-
dom and do not carry any interesting structure at all. Many
approaches have been suggested to define some complexity
measures that are closer to the intuitive notion of complexity
and overcome the difficulties of Kolmogorov complexity. For
example, Kolmogorov complexity is based on algorithmic
information theory considering objects as individual symbol
strings, whereas the measures effective measure complex-
ity (EMC) (Grassberger, 1986), excess entropy (Crutchfield
et al., 1983), predictive information (Bialek et al., 2001)),
etc., relate objects to random variables and are ensemble
(that is, set of interrelated objects –symbol strings) based.

The Kolmogorov complexity measures M assigns a
complexity value to each individual object x′ under con-
sideration. Let us denote it as ()MC x′ . It is assumed that
x′ corresponds to a string sequence of a certain length

and its components assume values from a certain domain.
In (Feldman et.al.,1997), (Ziv Bar-Yossef et al, 2003), (Em-

* Prof.Dr.Department of Technologies and Engineering, International Black Sea University, Tbilisi, Georgia
E-mail: irakli.rodonaia@ibsu.edu.ge

** Assist.Prof., Department of Technologies and Engineering, International Black Sea University, Tbilisi, Georgia
E-mail:vakhtang.rodonaia@ibsu.edu.ge

Irakli RODONAIA , Vakhtang RODONAIA

Journal of Technical Science and Technologies; ISSN 2298-0032; Volume 4, Issue 1, 2015

42

mert-Streib, 2010) statistic complexity that is not only dif-
ferent to all other complexity measures introduced so far,
but also connects directly to statistics, specifically, to statisti-
cal inference, was introduced. More precisely, a complexity
measure with the following properties is introduced. First,
the measure is bivariate comparing two objects, correspond-
ing to the pattern generating processes, on the basis of the
normalized compression distance(NCD) (Cilibrasi et al,.
2005), (Terwijn et al, 2011) with each other:

() min{ }(,)
max{ (), ()}

C xy C(x),C(y)NCD x y
C x C y

−
=

where C (x) denotes the compression size of string x
and C (xy) the compression size of the concatenated stings
x and y.

Second, this measure provides the quantification of an
error that could have encountered by comparing samples
of finite size from the underlying processes. Hence, the sta-
tistic complexity provides a statistical quantification of the
statement ‘X that is similarly complex as Y ’. This implies that
a fundamental complexity measure needs to be bivariate,
C(X, Y), instead of univariate comparing the two processes
X and Y.

Next, the desirable property of any complexity measure
is that a complexity measure should quantify the uncertainty
of the complexity value. As motivation for this property we
just want to mention that there is a crucial difference be-
tween an observed object x′ and its generating process
X. If the complexity of X should be assessed, based on the
observation x′ only, this assessment may be erroneous.
This error may stem from the limited (finite) size of obser-
vations. Also, the possibility of measurement errors would
be another source of wrong assessment. Based on these
considerations, the statistic complexity measure, suggested
by (Emmert-Streib (2010) is defined by the following pro-
cedure:

1. Estimate the empirical distribution function

ˆ
XXF of the normalized compression distance from n1

11
1, },|),({ n

ii
n

XX XxxxxNCDxS =′′′′′′==

from objects x′ and x′′ of size m generated by process
X (here ‘

’ means ‘is generated by X’)

2. Estimate the empirical distribution function ˆ
XYF of

the normalized compression distance from n2 ,
22
1, },|),({ n

ii
n

YX YyXxyxNCDyS =′′′′==

from objects x′ and y′ of size m generated by two dif-
ferent processes X and Y.

3. Determine

, ,
ˆ ˆsup () ()x X X X YT F x F x= −

and ()p Prob T t= ≤ .

4. Define
1 2

1 2, ,(, | , , , ,):
S

n n
X X X YC S S X Y m n n p=

as statistic complexity.

This procedure corresponds to a two-sided, two-sample
Kolmogorov-Smirnov (KS) test based on the normalized
compression distance (Cilibrasi et al., 2005) obtaining the
distances among observed objects.

The statistic complexity corresponds to the p-value of
the underlying null hypotheses, XYXX FFH =:0 , and,
hence, assumes values in [0,1]. The null hypothesis is a
statement about the null distribution of the test statistic

, ,
ˆ ˆsup () ()x X X X YT F x F x= −

and because the distribution functions are based on
the normalized compression distances among objects x′
and x′′ , drawn from the processes X and Y. This leads to a
statement about the distribution of normalized compression
distances. Hence, verbally, H0 can be phrased as “on aver-
age, the compression distance of objects from X to objects
from Y equals the compression distance of the objects only
taken from X”. If the alternative hypothesis 1 : XX XYH F F≠ is
true, this equality does no longer hold implying differences in
the underlying processes X and Y, leading to the differences
in the NCDs.

Applied to the problem of finding malware threats in
the flows between autonomic components CPi (Prangishvili
et al., 2013, Prangishvili et al., 2014) the above procedure
will look as follows. For each autonomic component (AC) of
the autonomic-component ensembles (ACEs) the process-
es X and Y are considered as the processes generating
objects represented in the form of strings. The strings, in
turn, represent traffic flows through these autonomic com-
ponents. The specific ways of how flows are transformed
into strings are considered later in the paper. The process
X (‘training process’) is the process generating flows in the
conditions when there are no malware threats. So, objects
(strings) generated by the process X are ‘healthy’ (they do
not contain any patterns of malware). These strings have to
be generated preliminary (before actual workload on an au-
tonomic components ensemble). Some fractions of objects
(string) have to be generated for the situation with unusual
(but not malicious) behavior. For randomly taken pairs x′
and x ′′ (the amount of such pairs is n1) of the generated
strings the metric NCD(x′ , x ′′) is calculated. The size of
samples n1 has to be sufficient to account for various pos-
sible situations and conditions that may occur in the specific
autonomic ensemble under consideration. Then the empiri-

cal distribution function ˆ
XXF is being built and stored in

the specific place.

When the ensemble starts actual operation (receives
workload), the process Y (‘production process’) generates
objects (strings) y′ , which represent actual current traf-
fic between ensemble’s components. Some of these objects
may contain malware patterns. The sample of the size n2 of
objects x′ (generated preliminary by the ‘training process’
X) and objects is being created and the metric NCD (
x′ , y′) is calculated for each pair. Then the empirical
distribution function ˆ

XYF is being built. Now, by applying the
steps 3 and 4 of the above procedure, the values of the
statistic complexity for each autonomic component can be
computed.

The obtained numerical value of the statistic complex-
ity can be interpreted in the following sense: in the current

Statistic complexity metrics as a basis for formal probabilistic model checking

Journal of Technical Science and Technologies; ISSN 2298-0032; Volume 4, Issue 1, 2015

43

conditions the flows of packets through the given autonomic
component cannot be regarded as complex flows (with the
probability equal to p). That is, the flows may contain some
patterns (indicating the possible presence of some malware
threats) with the probability p.

It should be pointed out that in production conditions
(when the ensemble is under actual workload) the sam-
ple size n2 cannot be determined in advance. This size
depends on the actual working conditions: traffic intensity,
frequency of creation of objects (strings), actual hardware
indices (CPU load, available memory, etc.). As a rule, the
number n2 is less than the number n1. This fact can some-
what decrease the precision of the metric, but it requires
additional technical consideration. In general, the statistic
complexity has the very desirable property that the power

reaches asymptotically 1 when ∞→1n and ∞→2n .
This means, for infinite many observations the error of the
test to falsely accept the null hypotheses when in fact the
alternative is true and becomes zero. Formally, this property

can be stated as 0→p for ∞→1n and ∞→2n .

Finally, it should be noted that despite the fact that sta-
tistic complexity is a statistical test, it borrows part of its
strength from the NCD and, respectively, Kolmogorov com-
plexity on which this is based on. Hence, it unites various
properties from very different concepts.

Application of statistic complexity to auto-
nomic components ensembles
In the proposed approach, to anomaly detection in auto-
nomic component ensembles, an attempt to deal with the
wide range of malware threats has been made (unlike the
techniques described above and in (Prangishvili et al., 2013,
Prangishvili et al., 2014), which had to deal only with DDOS
attacks).Autonomic cloud computing datacenters can be
considered as autonomic-component ensembles (ACEs)
and be represented by constructions of SCEL (Software
Component Ensemble Language), a kernel language for
programming autonomic computing systems (Prangishvili et
al., 2013), (ASCENS, 2010), (De Nicola R et al., 2013). Each
(virtual) machine is running one instance of the Cloud Plat-
form called Cloud Platform instance (CPi). Each CPi is con-
sidered to be a service component. Multiple CPs communi-
cate over the Internet (IP ptotocol), thus forming a cloud and
within this cloud one or more service component ensembles.
The notions of autonomic components (ACs) and autonom-
ic-component ensembles (ACEs) (ASCENS, 2010), (De
Nicola R. et al., 2013) have been put forward as a means
to structure a system into well understood, independent and
distributed building blocks that interact in specified ways.

The process part of a component (Fig.1) is split into an
autonomic manager controlling execution of a managed el-
ement. The autonomic manager monitors the state of the
component, as well as the execution context, and identi-
fies relevant changes that may affect the achievement of its
goals or the fulfillment of its requirements. It also plans adap-
tations in order to meet the new functional or non-functional
requirements, executes them, and monitors that its goals
are achieved, possibly without any interruption. A managed
element can be seen as an empty “executor” which retrieves
from the knowledge repository the process implementing a
required functionality id and bounds it to a process variable
Z, sends the retrieved process for execution and waits until
it terminates. Also actual parameters for the process to be
executed can be stored as knowledge items and retrieved
by the executor (or by the process itself) when needed.

Figure 1. Functional description of a component

In our approach the notions of netflows, their in-
formational-theoretical metrics and components’ autonomic
manager are essentially leveraged. A network flow can be
defined in many ways. In a general sense, a flow is a series
of packets with some attribute(s) in common. Each packet
that is forwarded within a router or switch is examined for a
set of IP packet attributes. These attributes are the IP pack-
et identity or fingerprint of the packet and determine if the
packet is unique or similar to the other packets. All packets
with the same source/destination IP address, source/des-
tination ports, protocol interface, and class of service are
grouped into a flow and then packets and bytes are labeled.
This methodology of fingerprinting or determining a flow is
scalable because a large amount of network information is
condensed into a database of netflow information called the
netflow cache.

Figure 2. Interaction between netflow devices and autonomic components

Irakli RODONAIA , Vakhtang RODONAIA

Journal of Technical Science and Technologies; ISSN 2298-0032; Volume 4, Issue 1, 2015

44

A netflow-enabled device (netflow exporter: router or
switch) (see the Fig.2) sends to the netflow collector single
flow as soon as the relative connection expires. This can
happen 1) when TCP connection reaches the end of the
byte stream (FIN flag or RST flag) are set; 2) when a flow
is idle for a specific timeout; 3) if a connection exceeds long
live terms (30 minutes by default).

Packets captured by the netflow collector are stored to
a flow storage. In our approach the duration of each flow’s
formation time is unknown in advance and actually is de-
fined by the relevant collectors on the basis of the selected
connection expiration time criteria.

Flows accumulated at the flow storage are then sub-
divided into component flows. That is, flows which have
the component’s IP address as a destination address are
grouped and sent to the corresponding component (more
exactly, to the autonomic manager of a component - these
flows are marked with blue arrows in the Fig.2).

After receiving their destined flows, the component’s
autonomic manager can start the processing in order to re-
veal the abnormal behavior of flows in accordance with the
following technique.

Application for collecting and processing NetFlow statis-
tics are defined below (Fig.3).

Figure 3. Components of the NetFlow system for analysis of the statistics

Once the collector populates the raw file, the file is

passed on to the second component in the system, which is
called an aggregator. The aggregator receives the file from
the collector and processes it using predefined information
from the database. The data thus processed (aggregated) is
stored in the database. The user interface is a web applica-
tion that enables us to obtain information on the status of the
network, based on the data aggregated in the database. If it
is necessary to get more detailed information about a spe-
cific communication, the user may open the relevant raw file
via the web and filter it according to the desired criteria. The
location of the device collecting NetFlow statistics depends
on the architecture of the network itself. The amount of Net-
Flow information exported by network devices is directly
dependent on the amount of traffic passing through that de-
vice (exporter). Experience has shown that the amount of
NetFlow traffic does not exceed 1% of the total amount of
traffic through the network, so the “distance” between the
server (collector) and the network device exporting the data
(exporter) is not relevant. The accessibility and the security

of the server are the more important parameters.

In the proposed approach the different files with the
particular titles (relevant to the concrete SCPi‘s IP ad-
dresses) to store component flows are used. For exam-
ple, for the component flow to the SCPi with IP address
172.16.1.86, occurred on 2014/03/16 at 15:00, the files
with titles F’171.16.1.86’-2014-03-10-15-00.bin and the
F’171.16.1.86’-2014-03-10-15-00.zip will be created. If we
look at known threats in data networks from point of unwant-
ed traffic, we can separate the following groups (Ekmanis,
2013):

1. Denial of service attacks.

2. Port scans and remote vulnerability searching and
virus spread.

3. P2P files exchange networks.

4. Email spam and web popup.

5. Open resources misuse (open DNS, open mail relay,
open proxy, Trojan horse, etc.)

In our approach we observe the following traffic flow at-
tributes (Kołaczek, Juszczyszyn, 2008):

• Source/destination IP address and port number

To measure changes in IP address and port number
space we observe a value of Shannon entropy related to
these attributes (entropy is used to capture the degree of
dispersal or concentration of the distributions for traffic at-
tributes). Entropy values are calculated for separate com-
ponent flows files (obtained by using the utility nfdump). Dif-
ferent AMs (Autonomic Manager) use various time periods
length (see connection expiration time criteria above). The
following network variables are used for each component
flows files: entropy of source IP address, entropy of destina-
tion IP address, entropy of destination port number, entropy
of source port number. Duration attributes of each compo-
nent flow time are different and depend on the traffic con-
ditions and selected connection expiration time criteria

• Number of bytes and packets

These values are: bytes received by a host, bytes sent
by a host, packets received by a host, packets sent by a
host. Again, duration attributes of each component flow files
are different.

• TCP flags

The attribute TCP_FLAG - a difference between num-
ber of SYN packets sent and RST and FIN packets received
- is measured in the proposed approach. In normal condi-
tions, in long time observation we should get the mean value
of TCP_FLAG near zero. Intrusive actions like system scan-
ning, DoS attacks may cause the temporal distortion of the
mean value of TCP_FLAG.

• Duration of the connection

During various types of attacks, this value will be affect-
ed and so an anomaly may be detected. For example, worm
infection will generate a large number of connections with
similar duration. We simply use the value of connections’
duration attribute contained in the given component flow file.

• Communication Patterns

Fan-in is the number of nodes that originate data ex-
change with the current CPi, while Fan-out is the number of

Statistic complexity metrics as a basis for formal probabilistic model checking

Journal of Technical Science and Technologies; ISSN 2298-0032; Volume 4, Issue 1, 2015

45

hosts to which CPi initiates conversations. The above pat-
terns are invariant during most time of normal system activ-
ity or change in a predictive way. But while attack appears
they will change significantly.

As one can see, the component flows files contain the
same volume of information (they contain the same amount
of attributes of the same size). Hence, we can assume that
the size m of a component flow file represents the object
(in terms of the statistic complexity procedure) of size m.
In general, component flows files are regarded as objects

, , ,.........x x x′ ′′ ′′′ generated by the process X (‘training
process’) and , ,,y y y′ ′′ ′′′ objects generated by
the process Y (‘production process’).

As it was described, the proposed procedure requires
implementation of the ‘training process’ X (which gener-
ates ‘healthy’ flows containing no malware threats) before
starting real ‘production‘ (real-time) process Y. In order to
decrease overheads, this process is executed just once with
as large value of the sample size n1 as it is possible. The

obtained results (the empirical distribution function ˆ
XXF) is

stored to each CPi which can run applications subsequently.
When applications are executed on the CPs, the objects

, ,,y y y′ ′′ ′′′ (corresponding component flows
files) are created and the empirical distribution functions
ˆ

XYF are calculated on each CPi . Then, according to the
steps 3 and 4 of the procedure, the value of statistic com-
plexity for each autonomic component is calculated.

The result of the proposed procedure gives us the dis-
tribution of probabilities of malware infection among auto-
nomic components of the datacenter.

To estimate the statistic complexity’s value, which prac-
tically indicates real malware threat, numerous simulation
experiments were carried out. The well-known simulation
tool CloudSim - a framework for modeling and simulation
of cloud computing infrastructures and services – has been
used. As a result of simulation experiments, we determined
that the statistic complexity’s value less than 0.25 can be
practically regarded as serious malware threat. In this con-
dition the immediate migration of the application from the
VM (where the application is being run currently) to another
VM (which is to be selected by using the ensemble’s com-
ponents autonomic managers’ knowledge base and issuing
the special SCEL statement qry) is required.

It should be pointed out that detection of malware
threats and consequent migration are being executed in
real-time scale and thus minimize damage from possible
malware threats. This also contributes to maintaining the
required SLA.

The time of migration must be taken into account when
determining the response time. In general, streams of re-
quests generated by each client (application) may be de-
composed into a number of different VMs. In case of more
than one VM serving the ith client, requests are assigned
probabilistically, i.e.,

ijα portion of the incoming requests
are forwarded to the jth server (host of a VM) for execution.

The exponential distribution function is used to model
the service time of the clients in this system. Based on this
model, the response time distribution of a VM (placed on
server j) is an exponential distribution with mean:

 1
ij p

j ij ij ij i

R
C

=
φ µ −α λ (1)

where µij denotes the service rate of the i-th client on the
j-th server when a unit of processing capacity is allocated to
the VM of this client. The VM unit is defined as the basic unit
of virtual resource, which is associated with a set of physical
resources such as CPU time, main memory, storage space,
electricity etc. In real cloud systems, any virtual resource a
customer can apply should be a multiple of the VM unit.

Migrating a VM between servers causes a downtime
in the client’s application. Duration of the downtime is re-
lated to the migration technique used in the datacenter.
The downtime also is the function of the link speed and VM
memory size.

Let us assume that an application i had to migrate ni
times during its execution cycle. We introduce the following
notations:

 ni - amount of migration of the i-th application during
its execution cycle;

mk - the number (index) of VM (CP) on which the ap-
plication runs in k-th migration period;

ipSC - the value of the statistic complexity obtained
for the i-th application running on the p-th VM in the given
time period

ijR - see (1)

Then the formula (1) must be updated by adding the
term representing the expected downtime of the VMij:

1

1

0

((()))
i

k k k

im i

n

im im im
k

R if n

SC R DT LinkSpeed otherwise
=

 =

∗ +

∑

The obtained estimation of response times is much
closer to the actual response times (observed in real opera-
tional conditions) and thereby contributes to maintaining the
required SLA.

Conclusions and future works
In the paper we presented a new technique for detecting
malware threats in autonomic component ensembles. The
technique is based on the statistic complexity metrics. Un-
like the Kolmogorov complexity, which is based on algo-
rithmic information theory considering objects as individual
symbol strings, the statistic complexity relates objects to
random variables and are ensemble based. It is a bivariate
measure that compares two objects, corresponding to the
pattern generating processes, on the basis of the normal-
ized compression distance with each other. Besides, this
measure provides the quantification of an error that could
have been encountered by comparing samples of finite size
from the underlying processes. The approach transforms
the classic problem of assessing the complexity of an object
into the realm of statistics. This may open a wider applicabil-
ity of this complexity measure to diverse application areas.
In particular, the statistic complexity is applied to the prob-
lem of detecting malware threats in autonomic component
ensembles. The proposed procedure requires implementa-
tion of the ‘training process’ X (which generates ‘healthy’

Irakli RODONAIA , Vakhtang RODONAIA

Journal of Technical Science and Technologies; ISSN 2298-0032; Volume 4, Issue 1, 2015

46

flows containing no malware threats) and objects gener-
ated by the actual (possible infected) process Y (‘production
process’). The component flows files are used as objects
of the processes X and Y. The result of the proposed pro-
cedure gives us the distribution of probabilities of malware
infection among autonomic components of the datacenter.
The proposed procedure of detecting malware threats and
consequent migration are being executed in real-time scale
and thus minimizes damage from possible malware threats.
This also contributes to maintaining the required SLA.

Quantitative verification based on the sta-
tistic complexity estimates
Model checking represents a formal technique for verifying
whether a system satisfies its specification. The technique
involves building a mathematically-based model of the sys-
tem behavior and checking that system properties specified
formally in a temporal logic hold within this model. The result
is based on an exhaustive analysis of the state space of the
considered model - a characteristic that sets model checking
apart from complementary techniques such as testing and
simulation.

Quantitative verification techniques (Kwiatkowska,
2013), (Calinescu et al., 2008) are implemented within
PRISM, a probabilistic model checker, which provides direct
support for discrete-time Markov chains(DTMCs), Markov
decision processes (MDPs) and continuous- time Markov
chains (CTMCs).

The discrete-time Markov chain (DTMC), is defined by a
set of states S and a transition proba-bility matrix P: S × S →
[0, 1], where P(s, s’) is the probability of making a transition
from one state s to another state s’. Markov decision pro-
cesses (MDPs) extend DTMCs by allowing both probabilistic
and nondeterministic behavior. More formally, in any state
there is a nondeterministic choice between anumber of dis-
crete probability distributions over states. Non-determinism
enables the modeling of asynchronous parallel composition
of probabilistic systems. It also permits under-specification
of certain aspects of a system. A continuous-time Markov
chain (CTMC), on the other hand, is defined by a set of
states S and a transition rate matrix R : S × S → IR≥0, where
R(s, s’) is the rate of making a transition from state s to s’.
The interpretation is that the probability of moving from state
s’ within t time units (for positive, real-valued t) is (, ')1 R s s te− ⋅−

MDP properties are typically expressed in temporal log-
ic PCTL (Probabilistic Computation Tree Logic). Examples
of PCTL properties are: “What is the maximum probability
over all possible strategies (variants of processes progress)
of migration of an application being executed on VMi?” or
“What is the minimum probability over all possible strate-
gies, of SLA violation within 10 time steps? “ or “What is the
long-time probability of the ACE’s being operated without
SLA violation at least 0.99?” and etc. The distribution of mal-
ware threats probabilities obtained by the above-described
procedure, serves as a starting point for formal reasoning
about the behavior of the ACEs.

Quantitative verification techniques is implemented
within PRISM, a probabilistic model checker developed at
the Universities of Birmingham and Oxford. PRISM provides
the direct support for DTMCs, MDPs and CTMCs. Two key
aspects of autonomous cloud computing ensembles are:
autonomous behavior and adaptivity. Each aspect can be
explored by the use of PRISM. The temporal PCTL to spec-
ify autonomous behavior goals can be employed and the
above goal may be as follows: “What is the probability that
the autonomous ensemble will remain in safe (from the SLA

requirements’ standpoints) state until finishing all assigned
tasks successfully?”.The problem can be stated as follows.
Given a PCTL formula Φ that specifies the mission goal de-
termines a control strategy that optimizes the probability of
satisfying Φ. Clearly, this problem can be solved by applying
quantitative verification, namely, computing the minimum/
maximum probability or expectation, and then synthesizing
the optimal strategy.

Autonomous cloud ensembles dynamically adapt be-
haviors to the changing requirements and on texts. It has
been argued that the need to continuously provide reliabil-
ity, dependability and performance guarantees for adaptive
systems calls for quantitative runtime verification. This is
different from offline quantitative verification performed at
the design stage where a model is developed and analyzed
pre-deployment in order to improve the design. Runtime
verification, in contrast, is invoked as the system is being
executed, intercepting and steering its execution to ensure
that given requirements are continuously satisfied in spite of
adaptation. The framework proceeds autonomically, repeat-
edly invoking the monitoring, analysis, planning and execu-
tion stages as follows:

- monitor the reliability, workload and response time of
services, to derive an operational model;

- analyze performance and QoS requirements, utilizing
the values of parameters obtained from the monitoring
phase;

- plan adaptation of the system based on the results of
analysis, which may involve changing the resource al-
location or selection of optimal service;

- execute the adaptation of the system

The models used are DTMCs and CTMCs, and the fol-
lowing are example requirements:

- P≤0.20 [F failed alarm]-“the probability that at an alarm
(need to migrate to another VM due to the high prob-
ability of malware threat) failure ever occurs during the
lifetime of the system is less than 0.20” (PCTL property);

- R≤0.05 [F[service #35 being executed] dropped] -“the probability of
a change VM request being dropped due to the request
queue being full during a day of operation is less than
0.05” (CSL property).

The QoS framework implements the analysis stage us-
ing quantitative verification with PRISM. This involves ex-
ecuting PRISM verification tasks at run-time.

It is necessary to point out again that the DTMC, CTMC
and MDP procedures run within PRISM by using the distri-
bution of malware threats probabilities obtained by the sta-
tistic complexity procedure which serves as a starting point
for formal reasoning about the behavior of the ACEs.

In the future work, we plan to develop a hybrid tech-
nique which combines aspects of symbolic and explicit ap-
proaches to overcome some performance problems. We are
planning to add a MTBDDs (multi-terminal binary decision
diagrams) to a purely symbolic framework of PRISM.

Statistic complexity metrics as a basis for formal probabilistic model checking

Journal of Technical Science and Technologies; ISSN 2298-0032; Volume 4, Issue 1, 2015

47

References
ASCENS, (2010): http://www.ascens-ist.eu

Bialek W, Nemenman I, Tishby N (2001) Predictability, com-
plexity, and learning. Neural Computation 13: 2409–2463.

David P. Feldman, James P. Crutchfield. (1997). Measures
of Statistical Complexity: Why?. Department of Physics, Uni-
versity of California, Davis, CA 95616, Electronic Address:
dpf@santafe.edu, 1997

De Nicola R., Loreti M., Pugliese R., Tiezzi F. (2013). SCEL
- a Language for Autonomic Computing. ASCENS project,
Technical report.

Cilibrasi R., Vitanyi P., (2005). Clustering by compression.
IEEE Transactions Information Theory 51: 1523–1545

Ekmanis, M. (2013). Unwanted traffic identification prob-
lems. Martins Department of Telecommunications, Riga
Technical University, Azenes iela 12, LV-1048, Riga, Latvia.

Emmert-Streib F. (2010). Statistic Complexity: Combining
Kolmogorov Complexity with an Ensemble Approach,
Queen’s University, Belfast, United Kingdom.

Grassberger P. (1986). Toward a quantitative theory of self-
generated complexity. Int J Theor Phys 25: 907–938

Kołaczek G., Juszczyszyn K. (2008). Attack pattern analysis
framework for multi-agent intrusion detection system. In-
ternational Journal of Computational Intelligence Systems,
Vol.1, No. 3 pp. 215 - 224

Kwiatkowska M.(2013). Advances in Quantitative Verifica-
tion for Ubiquitous Computing, In Proc. 11th International
Colloquium on Theoretical Aspects of Computing (ICTAC
2013), volume 8049 of LNCS, pages 42-58, Springer, Hei-
delberg.

Prangishvili, A., Shonia, O., Rodonaia, I., Rodonaia, V.
(2013). Formal security modeling in autonomic cloud
computing environment. WSEAS / NAUN International
Conferences, Valencia, Spain.

Prangishvili, A., Shonia, O, Rodonaia, I., Mousa M (2014).
Formal verification in autonomic component ensembles,
WSEAS / NAUN International Conferences, Salerno, Italy.

S.A. Terwijn, S. A., Torenvliet, L. & Vitanyi, P.M.B. (2011).
Nonapproximability of the Normalized Information Distance,
J. Comput. System Sciences, 77:4, 738–742

Bar-Yossef, Z., Jayram, T.S. & Sivakumar, D.R. (2003). An
information statistics approach to data stream and commu-
nication complexity. IBM Almaden Research Center, San
Jose, CA 95120.

