
31

Apache Kafka - Real-time Data Processing

-

Nodar Momtselidze*

Abstract

Apache Kafka is creating a lot of buzz these days. While LinkedIn, where Kafka was founded, is the most well known user,
there are many companies that use this technology successfully. Kafka has several features that make it a good t for
companies' requirements: scalability, data partitioning, low latency, and the ability to handle large number of diverse consumers.
It works with Apache Storm and Apache Spark for real-time analysis and rendering of streaming data. The combination of
messaging and processing technologies enables stream processing at linear scale. Common use cases include: Messaging,
Website activity tracking, Log aggregation, Stream Processing, Commit log.

Keywords: Messaging, Website activity tracking, Log aggregation, Stream Processing.

Introduction

Kafka is one of those systems that is very simple to describe at
a high level but has an incredible depth of technical detail when
you look into it deeper. The Kafka documentation does an
excellent job of explaining the many designs and
implementation subtleties in the system. Kafka is a distributed,
partitioned, and replicated commit log service. It provides the
functionality of a messaging system but with a unique design.
In this article, we will begin by briey introducing Kafka, and
then demonstrate some of Kafka's unique features by walking
through an example scenario. Wewill also cover some
additional usage cases and also compare Kafka to existing
solutions.

Real Time Data Processing Challenges

Real Time data processing challenges are very complex. As
we all know, Big Data is commonly categorized into volume,
velocity, and variety of the data, and Hadoop like system
handles the Volume and Varity part of it. Along with the volume
and variety, the real time system needs to handle the velocity
of the data as well. And handling the velocity of Big Data is not
an easy task. First, the system should be able to collect the
data generated by real time events streams coming in at a rate
of millions of events per seconds. Second, it needs to handle
the parallel processing of this data as and when it is being
collected. Third, it should perform event correlation using a
Complex Event Processing engine to extract the meaningful
information from this moving stream. These three steps should
happen in a fault tolerant and distributed way.The real time
system should be a low latency system so that the computation
can happen very fast with near real time response capabilities.

 Figure 1:

Figure 1 depicts a different construct of a real time system. Streaming
data can be collected from various sources, processed in the stream
processing engine, and then write the result to destination systems. In
between, the Queues are used for storing/buffering the messages.

How Kafka works

Like many publish-subscribe messaging systems, Kafka
maintains feeds of messages in topics. Producers write data to
topics and consumers read from topics. Since Kafka is a
distributed system, topics are partitioned and replicated
across multiple nodes. Messages are simply byte arrays and
the developers can use them to store any object in any format –
with String, JSON, and Avro, the most common one. It is
possible to attach a key to each message, in that case the
producer guarantees that all messages with the same key will
arrive to the same partition. When consuming from a topic, it is
possible to congure a consumer group with multiple
consumers. Each consumer in a consumer group will read
messages from a unique subset of partitions in each topic they
subscribe to, so each message is delivered to one consumer in
the group, and all messages with the same key arrive at the
same consumer. What makes Kafka unique is that it treats
each topic partition as a log (an ordered set of messages).
Each message in a partition is assigned a unique offset. Kafka
does not attempt to track which messages were read by each
consumer and only retain unread messages; rather, Kafka
retains all messages for a setamount of time, and consumers
are responsible to track their location in each log.
Consequently, Kafka can support a large number of
consumers and retain large amounts of data with very little
overhead.

Massaging system

Apache Kafka is the messaging system originally
developed at LinkedIn for processing LinkedIn's activity
stream.

Ana Tsitsagi**

Journal of Technical Science and Technologies; ISSN 2298-0032; e-ISSN 2346-8270; Volume 4, Issue 2, 2015

*Prof. Nodar Momtselidze Professor at the Faculty of Computer Technologies and Engineering
International Black Sea University, E-mail: nmomtselidze@ibsu.edu.ge

Figure 2:

The overall architecture of Kafka is shown in Figure 2. Kafka is
d is t r ibuted in nature which typ ica l ly consis ts of
multiplebrokers. To balance load, a topic is divided into
multiple partitions and each broker stores one or more of those
partitions. Multiple producers and consumers can publish and
retrieve messages at the same time. Kafka relies heavily on
the le system for storing and caching messages. There is a
general perception that "disks are slow" which makes people
skeptical that a persistent structure can offer competitive
performance. In fact, disks are both much slower and much
faster than people expect depending on how they are used; a
properly designed disk structure can often be as fast as the
network. The key fact about disk performance is that the
through put of hard drives has been diverging from the latency
of a disk seek for the last decade. As a result, the performance
of linear writes on a 6 7200rpm SATA RAID-5 where array is
about 300MB/sec but the performance of random writes is only
about 50k/sec withdifferences of nearly 10000X! These linear
reads and writes are the most predictable of all usage patterns,
and hence the one detected and optimized best by the
operating system using read-ahead and write-behind
techniques. Kafka has a very simple storage layout. Each
partition of a topic corresponds to a logical log.
 Physically, a log is implemented as a set of segment les of
approximately the same size (e.g., 1GB). Every time a
producer publishes a message to a partition, the broker simply
appends the message to the last segment le. For better
performance, Kafka ush the segment les to disk only after a
congurable number of messages have been published or a
certain amount of time has elapsed. A message is only
exposed to the consumers after it is ushed.

Figure 3:

Figure 3 shows how different types of producers can
communicate to different types of consumers through the
Kafka Broker.Kafka is explicitly distributed—producers,
consumers, and brokers can all be run on a cluster of
machines that co-operate as a logical group.This happens
fairly naturally for brokers and producers, but consumers
require particular support. Each consumer process belongs to
a consumer group and each message is delivered to exactly
one process within every consumer group. Hence, a consumer
group allows many processes or machines to act logically as a
single consumer. The concept of a consumer group is very
powerful and can be used to support the semantics of either a
queue or topic as found in JMS. To support queue semantics,
we can put all consumers in a single consumer group, in which
case each message will go to a single consumer. To support
topic semantics, each consumer is put in its own consumer
group, and then all consumers will receive each message.
Kafka has the added benet in the case of large data that no
matter how many consumers a topic has, a message is stored
only a single time.

Kafka components

1. Quick start: install vagrant, install virtual box, git clone,
cd skala-kafka, vagrant up. Zookeeper should be
running.

2. Creating producers:

3. Creating consumers:

32

Nodar Momtselidze, Ana Tsitsagi

Journal of Technical Science and Technologies; ISSN 2298-0032; e-ISSN 2346-8270; Volume 4, Issue 2, 2015

33

The Java Producer API

Producer: Kafka provides the Producer class (class
Producer<K,V>) for creating messages for single or multiple
topics with message partition as an optional feature. The
following is the class diagram and its explanation:

Figure 4:

Here, Producer is a type of Java generic written in Scala where
we need to specify the type of parameters; K and value,
respectively. Keyed Message: The Keyed Message class
takes the topic name, partition key, and the message value that
needs to be passed from the producer as follows: class Keyed
Message [K, V] (valtopic: String, val key: K, val message: V)
Here, Keyed Message is a type of Java generic written in Scala
where we need to specify the type of the parameters; K and V
specify the type for the partition key and message value,
respectively, and the topic is always of type String. Producer
Cong: The Producer Cong class encapsulates the values
required for establishing the connection with brokers such as
the broker list, message partition class, serializer class for the
message, and partition key.

This Simple Producer class is used to create a message for a
specic topic and transmit it. As the rst step, we need to import
the following classes:

As the next step in writing the producer, we need to dene
properties for makinga connection with Kafka broker and pass
these properties to the Kafka producer:

As the nal step, we need to build the message and send it to
the broker as shown in the following code:

Compile the preceding program and use the following
command to run it: [root@localhost kafka-0.8]# java Simple
Producer kafka topic Hello_There_Here, kafka topic is the
topic that will be created automatically when the message
Hello_There is sent to the broker.
Conclusion

References

Garg, N. (2013 October) Apache Kafka.
Mitra, M. (2013 EMC Proven Professional Knowledge
Sharing).analytics on big fast data using real time stream data
processing architecture.

Stein, J.(BDOSS). Apache Kafka, realtime data pipelines.
Kreps,J,; Narkhede, N., & Rao, J. (Kafka: a Distributed
Messaging System for Log Processing.

Mitra, M. (2013 EMC Proven Professional Knowledge
Sharing). analytics on big fast data using real time stream data
processing architecture.

 Barrera, P. Reliable RT processing Onnen.E.(September 27,
2012). Data Models and Consumer Idioms Using Apache
Kafka for Continuous Data Stream Processing.

Apache Kafka - Real-time Data Processing

Journal of Technical Science and Technologies; ISSN 2298-0032; e-ISSN 2346-8270; Volume 4, Issue 2, 2015

	cte-30.3.2016
	ctef-20.3.2016
	1
	cte-20.3.2016
	Binder1
	1
	11
	Blank Page

	rerer

	ctef-20.3.2016
	2
	asds

