
Methodology of Teaching Dynamic Programming

15

Journal of Technical Science and Technologies; ISSN 2298-0032; Volume 3, Issue 1, 2014

Methodology of Teaching Dynamic Programming

George MANDARIA*

Abstract

In this article the methodology of learning dynamic programing is described. Mentioned methodology is one of the main methods of solving
some programming problems and foresees dividing one problem into such sub problems that using their solutions will be possible to build the
solution of initial problem. The realization of this method needs memorizing the solutions of sub problems, thus, the dynamic tables are used.
As well as that the solutions of sub problems and recursive dependence are explained in this article. It is showed how to use recursive depend-
ence in order to divide a problem into sub problems. Moreover, some sample problems and their solutions are included.

Keywords: Dynamic programming methodology, Dynamic tables, right recursive dependencies, Sub problems

Introduction

Dynamic programming methodology is one of the main tools
used to solve many problems in the field of informatics. It
actually is mentioned in a lot of algorithmic books, but in a
way, that for a beginner programmer it will be quite hard to
understand the essence of it. That’s why while learning this
method, it is crucial to explain the essence and the practical
use of method understandably.

While formulating this or that problem it is essential to
determine the initial data of it, which is also called the pa-
rameters of the problem.

For example, while solving linear equation ax=b, it
means that this problem is determined by two parameters
a and b.

If we want to solve the problem of calculating the arith-
metic mean of some numbers, then the parameters of the
problem will be the amount of numbers and their values.

However, we’re not yet interested in a concrete algo-
rithm of solving problems. Our goal is to learn solving the
problem by finding the solutions of sub problems. In this
case it is suggested to consider the algorithm as the func-
tion of converting the input data into output, which will be the
solution of the initial problem.

Thus the above mentioned approach explains that any
problem can be formalized in a function, the arguments of
which might be:

• the amount of parameters
• the values of parameters
Now and later we will consider as parameters positive

integers only.
Usually, one of the arguments of the problem is con-

sidered to be the amount of its parameters. In case when
by value of this parameter it is possible to determine the
concrete values of other parameters, the last mentioned can
be ignored. It usually occurs when parameters are given by
table. For example, if we want to find the sum of first K ele-

ments in the table, to solve this problem is enough to know
just the value of one K element, the other parameters can be
chosen from the table (Mandaria, 2012).

As soon as the problem is formalized as a function with
some arguments, we can bring in the statements of sub
problems. By saying “sub problem” we mean the same prob-
lem but with the fewer amounts of parameters, or with the
same amount of parameters, but at least one of them should
have the value less than in initial.

Methodology

As an example, let’s consider the problem of looking for
the heaviest coin from ten given. To formulate the problem
let’s determine the function “the heaviest coin”, the argu-
ments of which are the amount of coins (10) and the weight
of each one, thus the function will have 11 arguments. For
now, we are not interested in this function concretely. The
most important here is that this function gives us the correct
solution.

We can consider 9 sub problems for the given initial
problem. The sub problems will have the fewer amounts of
arguments:

“the heaviest coin” from one coin,
“the heaviest coin” from first two coins,
“the heaviest coin” from first three coins;

“the heaviest coin” from first nine;
Thus, in our function (“the heaviest coin”) argument is

believed to be the amount of coins, considering which it is
possible to determine the weight of each coin. Above men-
tioned problems have the fewer amount of arguments than
the initial problem. To be more precise in the sub problems

* Assoc. Prof. Dr., Faculty of Computer Technologies and Engineering, International Black Sea University, Tbilisi, Georgia
E-mail: gmandaria@ibsu.edu.ge

George MANDARIA

16

Journal of Technical Science and Technologies; ISSN 2298-0032; Volume 3, Issue 1, 2014

we just have one argument instead of 11, which makes the
function way easier. Decreasing the amount of arguments
is achieved by the correct formulation of sub problems: “the
heaviest coin from first K coins”. That makes determining
the exact weight of first K coins possible and thus there is
no need in consideration of these weights as a separate ar-
gument. In case if the sub problem was formulated so “the
heaviest coin from K coins”, their weights would be separate
arguments, because we would not know from N coins which
K coin is considered. That’s exactly why it is crucial to formu-
late sub problems correctly while using dynamic program-
ming methods.

It should be mentioned, “sub problems” must not be un-
derstood as some stages of solving the initial problem, like
organizing data input and output, data sorting or solving any
part of the given problem.

As we already mentioned, one of the main methods of
solving the problems is dividing one problem into such sub
problems that using their solutions will be possible to build
the solution of initial problem.

Thus, to solve the problem it might be needed to solve
one or more sub problems.

The method of solving the initial problem on the base of
the solutions of sub problems can be given in a dependence
form, where the initial problem’s corresponding function’s
values are determined by the sub problem’s corresponding
function’s values.

Dependencies which connect the same functions, but
with different arguments are called recursive dependen-
cies, or recursive equations.

Recursive dependencies (equations), in which the
amount of input functions’ arguments or values from the
right side are less than those from the left side are called
right recursive dependencies. In case of having multiple
arguments, decreasing the value of at least one of them,
would be enough.

We should pay attention to the fact that dependencies
should be determined for each possible value of arguments.
Thus, the values of a function should be determined for ini-
tial value of parameters.

For example, it should be mentioned that recursive de-
pendency: S(i)=S(i-1)+ai, i ≤1, which connects two functions
with different parameters: S(i) and S(i-1), also a(i) and a(i-1)
for any value of i would be incorrect without S(0) and a(0)
initial values, as it is not determined for i=1.

Of course, there are more difficult dependencies that
connect more than two functions to one another.

The next important step after the problem is divided into
sub problems and the recursive equations are determined,
is the method of building of solution of the initial problem by
using the solutions of sub problems.

One effective way of “memorizing” the solutions of sub
problems is using the tables. The method of solving prob-
lems this way is called dynamic programming method. The
main point of this method is that for each following value of
parameter in order to find the solution of sub problem, and
consequently the solution of initial task, we are using not
the given initial data, but we find it using already found solu-
tions of sub problems for the previous values of parameter
and preliminarily determined recursive equations (Mandaria,
2013).

Sub problem is formulized in function form, which has
one or more arguments. If we consider a table with the
amount of elements equal to the amount of groups of all
possible different values of function arguments, then we can
match each group to the table element. When all elements

of the table (solutions of sub problems) are known, we can
find the solution of initial task. However, we need to consider
more or less rational method of finding the table elements.

Generally, for one dimensional array this type of method
is represented by sequential calculation, either started from
the first element, or the second one. For two-dimensional ar-
ray the method of calculating the elements is a little bit more
complex and it can differ depending on a given problem.

Also it should be mentioned, that in case of two-dimen-
sional arrays the solution of an initial problem might not al-
ways be the finally calculated value: it may be the maximum
element of dynamically constructed array, the last element of
the first line and etc. (Cormen Thomas, Leiserson Charles,
Rivest Ronald, Stein Clifford, 2001).

Let’s discuss several problems, which are solved using
the methods of dynamic programming.

Problem # 1. Find the number of sequences with the
size of N consisting of 0-es and 1-s, where none of the two
1-s are standing next to each other (Berov, Lapunov, Mat-
iukhin, Ponomarev, 2000).

The algorithm for solving this problem is the following:
we should mark the number of sequences having length K
with Fk and try to find this number by using of the numbers of
similar sequences with lengths less than K. If the last symbol
of such sequence of having length K is 0, then for the previ-
ous K-1symbol we can take any sequence having the length
K-1 and the number of such sequences is Fk-1. But if the last
symbol is 1, then, according to the conditions, the previous
symbol has to be 0 and as its previous K-2 symbol we can
take any sequence with the length of K-2, and its number is
Fk-2. Therefor we get the following: Fk =Fk-1+Fk-2.

If N=10, then the corresponding single-element dynam-
ic table will be the following:

Problem # 2. From the given numeric sequence A[1..N]
delete the minimal amount of elements, so that the elements
left in the sequence create strongly increasing sequence (or,
we can say, you need to find the maximal strongly increasing
subsequence of sequence A).

For better explanation, let’s discuss clearer, but, as it
always happens, less affective (very slow) algorithm. Let’s
generate every subsequence of the sequence containing N
elements and for each of them check whether it is the maxi-
mal, strongly increasing subsequence or not.

Let’s generate every number from 0 to 2N -1, find their
binary representations and create subsequences from the
elements of array A, with the indexes corresponding to the
unit bits in this representation.

We’ll have 2N such subsequences, that’s why even for
not so big N, this algorithm will work too slowly.

Let’s say, that while generating those subsequences we
found strongly increasing subsequence with K element in it.
After that we only need to check the subsequences contain-
ing more then K elements.

Let’s discus the initial sequence containing N elements.
If it isn’t our target, then we should generate a subsequence
with N-1 elements. If the target still isn’t found, we should
check a subsequence with N-2 elements and so on. In the
worst case we’ll have to discus 2N different situations (Ko-
tov, Lapo, 2000).

Methodology of Teaching Dynamic Programming

17

Journal of Technical Science and Technologies; ISSN 2298-0032; Volume 3, Issue 1, 2014

For solving this problem faster, we can use Dichotomy
method for K (number of elements in subsequence).

Now, let’s discus more effective method for solving the
given problem. Let’s initialize A, B and C arrays having the
length N. In A[1..N] we keep the numbers from the initial se-
quence; element B[i] is the length of the target subsequence
with the ending element A[i]. C[i] is an index of an element,
standing directly before of A[i]. (C[i]=0, if the previous ele-
ment doesn’t exist).

If N=1, then A[1] is a subsequence we’re looking for.
Also B[1]=1 and C[1]=0. Let’s assume that B and C arrays
are already filled with elements from first till (i-1)th. Let’s try
to get B[i] and C[i] elements (which means determining re-
cursive dependencies). For this we should go through the
array A from first till (i-1)th element and look for K index, for
which this statements will be true:

1. A[k]<A[i];
2. B[k] is maximum.

It is clear, that finding the sub sequence of maximum
length which will be ending with A[i] element is possible if we
write this element in the end of such subsequence that has
the A[k] element as last. Thus, these will be the recursive
formulas: B[i]=B[k]+1 and C[i]=k.

Let’s say we went through all N elements of A array and
found the maximum element in B array. Let’s call the index
of this element IndexMax. The value of this element is the
length of longest subsequence.

The method of finding the needed subsequence is as
follows. Let’s say we want the output to be starting from
the end of the subsequence and thus j is its current index.
First of all, we state: j= IndexMax and we write A[j], which
is the last element, as an output. The previous element of
it in the subsequence will be C[j], That’s why its index from
end will be determined as j= C[j]. Above mentioned opera-
tions should be repeated until j value will become 0 (which
will mean that we’ve reached the beginning of the subse-
quence). The algorithm, written in C++ will be as follows:

C[1]=0; B[1]=1; Max=1; IndexMax=1;
For (i=2; i<=N; i++)
 { Max1=0;
 p=0;
 for(k=1; k<=i-1; k++)
 if (A[k]<A[i] && Max1<B[k])
 { Max1=B[k];
 p=k; }
 C[i]=p;
 B[i]=Max1+1;
 if (B[i]>Max)
 { Max=B[i];
 IndexMax=I; } }
j=IndexMax;
While (j<>0)
{ Cout<<A[j]<<” “; j=C[j]; }

Problem #3. Make a new B matrix from the given A
matrix with size NxN, which will have the same size. Bij is
element equal to the maximum value taken from the area of
array A, wich is surrounded from the right side by diagonal
passing Aij element.

The obvious solution of the problem is in using such
procedure that by (i, j) coordinates (numbers of rows and
columns) of elements is looking for elements with maximum
values in the corresponding part of matrix A.

Thus, it is not hard to notice that this statement is true
for the first column of B matrix:

B[i][1]=A[i][1], i=1, 2, ..., N

The elements of other columns can be found as follow-
ing:

B[i][j]=max(A[i][j], B[i-1][j-1], B[i][j-1], B[i+1][j-1])

Apart from that it should be mentioned that the matrix
indexes should not exceed of the matrix boarders.

Thus, we are building square NxN dynamic matrix,
which is filled by columns. The elements of this matrix are
found by comparing already known “neighbor” elements and
corresponding element from the initial matrix.

Problem #4. Two strings of symbols are given: x=a1a2...am
and y=b1b2...bn. d(x, y) is used to determine the minimum
amount of taken out, changed and put in symbols needed
to transform x string into y string. For example, d(ptslddf,
tsgldds)=3.

For the given x and y strings find d(x, y).
For x=a1...am and y=b1...bn, ai and bj are symbols,

1 ≤ i ≤ m, 1 ≤ j ≤ n. Finding d(x, y) using dynamic program-
ming method is possible as follows:

We determine d[m][n] matrix elements of wich

d[i][j]=d(a1...ai, b1...bj), 0≤ i≤m, 0≤ j≤n

It is clear that d[0, j]=j; d[i, 0]=i.
As well as that it is not hard to see that:

d[i][j]=min(d[i-1][j]+1, d[i][j-1]+1, d[i-1][j-1]+Pij),

where Pij=1 if ai≠bj and Pij=0, if ai=bj. In the above men-
tioned representation the first element of min is correspond-
ed to the deleting operation of last element ai in a1...ai_1ai
string, after what within d[i-1][j] operations a1...ai_1 is trans-
formed into b1...bj string. Second element is corresponded

George MANDARIA

18

Journal of Technical Science and Technologies; ISSN 2298-0032; Volume 3, Issue 1, 2014

to the insertion of element bi in the end of b1...bj_1 string
which is a result of transformation of a1...ai row within d[i][j-1]
operations. The third element corresponds to the change of
ai element by bj element. The change occurs when ai≠bj (in
this case Pij=1) and not occurs when ai=bj.

d[m][n] is the minimum amount of operations needed for
the transformation of x string into y.

The dynamic two-dimensional table for the example
used in problem#4, where m=7, n=7, x=ptslddf, y=tsgldds
will have form as is shown below:

The solution of the initial problem is the last, d[7][7] ele-
ment of the table - 3. The algorithm written in C++ will be as
follows:

for(i=1; i<=m; i++)
 d[i][0]=i;
for(j=1; j<=n; j++)
 d[0][j]=j;
for(i=1; i<=m; i++)
 for(j=1; j<=n; j++)
 d[i][j]=min(d[i-1][j]+1, d[i][j-1]+1);
 d[i][j]=min(d[i][j], d[i-1][j-1]+P);

Conclusion

It is crucial to formulate the sub problem correctly while us-
ing dynamic programming method for solving problems or
determining recursive dependencies. We must try to de-
crease to minimum the amount of parameters used in the
sub problems, so that the problem is formalized in a form of
function with the minimum amount of arguments. It should
be mentioned that dependencies should be determined for
all possible values of arguments. That’s why the function
values should be determined for the initial values of param-
eters.

The corresponding to the initial problem function is de-
termined by the functions corresponding to sub problems.
Apart from that, it is important that rational method is used
to find the elements of dynamic table. When the elements
of dynamic table are known, we can find the solution of the
initial problem.

References

Cormen Thomas H., Leiserson Charles E., Rivest Ronald L.,
Stein Clifford. (2001). Introduction to Algorithms (2nd

Edition). Boston: Massachusetts Institute of Technol-
ogy.

Mandaria, G. (2012). Solution of some Computer Studies
Problems by Reducing it to a Sub-Problems - Re-
current Relations. Periodical Scientific Journal “IN-
TELECTI” #3(44), pp. 49-51.

Mandaria, G. (2013). Method of the Organization of Dynam-
ic Tables. Periodical Scientific Journal “INTELECTI”
#1(45), pp. 89-91.

Berov V.I., Lapunov A.V., Matiukhin V.A., Ponomarev A.E.
(2000). Features of National Tasks in Informatics.
Kirov.

Kotov V.M., Lapo I.A. (2000). Algorithmic Methods. Minsk.

