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Abstract 

A new approach to detecting Periodic Components with random phases of stationary time series corrupted by random com-
ponent is considered. The approach is based on usage of the new time series, which is the union of the principal singular 
vectors of the data matrix of the original time series. The approach allows significant improvement of resolving capacity for all 
existed method of pseudospectra estimation. The comparative examples, illustrated practical efficiency of the approach are 
considered. 
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Introduction

Spectral resolution is one of the biggest problems in digital 
signal processing and signal analyzing, while in Business 
sciences, forecasting and modelling of given time series 
is very crucial among a large variety of random processes 
(having trend, stationary, ergodic, purely random, etc.). Pro-
cesses containing periodical and random components are 
also very important (Milnikov, 2013). Correct estimation of 
parameters, as well as increasing the ability of resolving ca-
pacity or ability to separate components, which are close to 
each other in amplitudes and frequencies, are very impor-
tant to model data correctly, and finally to get accurate result 
for analysis and forecasting.

There exist several approaches for spectral estimation 
of stationary signal in modern literature, including paramet-
ric (Auto Regressive (AR), Autoregressive Moving Average 
(ARMA) etc) and non-parametric models. While these meth-
ods work well in many cases, they all have basic limitations. 
Parametric method requires some prior knowledge about 
time series, for instance - selection of correct order of AR/
ARMA model, at the same time these methods are sensitive 
to noise and in case of presence of noise, it can give us an 
incorrect result. Another variant of AR model is a Subspace 
method, which requires number of parameters to be known 
in advance (Hayes, 1996). On the other hand, non-paramet-
ric method lacks the possible information about signal, and 
also it is not statistically stable. For instance, periodogram 
has variance problem (Hayes, 1996). There exist several 
approaches to reduce variance in periodogram method, but 
it will also decrease its spectral resolution ability.

Objectives of Research

In this article we are considering the following model for 
analyzing given signal represented by some finite number of 
periodic components with additive white noise  
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where Aj –magnitude of j-th periodic component;
     fj –frequency of j-th periodic component;
θj  – uniformly distributed random phase of  j-th periodic 

component;
w(t)- random component (white noise in  our case);
m- is number of periodic comppnents.

 Due to the phases are uniformly distributed random 
variables, thus this model represents stationary signal (Mar-
ple, 1987). We also assume that the ratio of frequencies can 
be any number: so, the time series (1) is not harmonic.  

The main problem of spectral estimation method is to 
effectively separate components from each other and to re-
store good spectral pictures. Various parametric and non-
parametric methods fail in this task. Recently it has been 
proved that spectral resolution and resolving capacity can 
be improved by concatenating principal singular vectors of 
Hankel data matrix after its singular value decomposition. 
The latter allows artificial increasing of total observation 
time, which will help us to identify components that are very 
close to each other (Milnikov, 2013). It should be noted that 
for given series with length N and sampling period  ts (where   

 is sampling frequency, total observation time is given by , 
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and spectral resolution limit is 
1
* SN T

 
 . Concatenating prin-

cipal singular vectors allows introducing a time parameter 
s

n
o mNtT = , which is not a physical time of observation, but 

is equal to m times, the physical observation time. It was 
called the time of singular unfolding of the initial time se-
ries. Obviously, value of the spectral resolution of the time 
series, consisting of the union of the principal singular vec-
tors, increases m times. We emphasize that this result is in-
dependent of the spectral estimation method used. Another 
advantage of this approach consists in increasing of the sta-
tistical stability of spectral estimates (reduction ratio noise / 
signal) that is achieved by filtering properties of the low-rank 
tensor approximation: in all singular vectors ratio noise / sig-
nal ratio is less than in the original series (Milnikov, 2013)

In the recent article we tested this approach on station-
ary signal and also compared several existed methods to 
see that improving spectral estimation by concatenation of 
singular vectors will overcome those disadvantages that oc-
cur during usage of modern spectral estimation methods.

Methodology

Let us consider the following model:
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For x (t) to be stationary, it is necessary that phases 
be uniformly distributed random variables, let us take the 
following frequencies  =15,  =15.3, =15.7 and  
=16 andamplitudes be  A1=15, A2=16, A3=16.4, and A4=15.5. 
Sampling frequency is   =100, which means that sampling 

period is equal 
 

1 0.01s
s

t
f
= , sample length is equal 294 and

therefore, total observation time is equal   

resolution limit will be  0.34013605, power spectrum

of original signal using periodogram estimator is 
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Figure 1. Spectral structure of original signal

From Figure 1, we see that given sample size is not 
enough to detect hidden periodicity. We can see just three 
peaks, but the forth one is lost below. We will consider sev-
eral approaches.

Discrete Fourier Transform method 

We tested Discrete Fourier Transform (DFT) to estimate 
spectrum of the time series under consideration. 
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Figure 2. PSD estimation by Fourier method

The fig.2 shows that the DFT failed to detect 4 frequen-
cies, and due to the noise false peaks have been appear 
peaks. Also due to small sample size, spectral window also 
effects on the resolving capacity, different technical difficul-
ties are characters of Fourier method. First of all, it should 
be noted that frequencies do not satisfy Fourier harmonics 
criteria, also nonstatioanrity of signal makes Fourier  analy-
sis less useful.

 Eigenanalysis based approach

Eigenanalysis method is based on eigenvalue decomposi-
tion of autocorrelation matrix of given data sample, and us-
ing its eigenvalue and eigenvectors.  Eigen analysis method 
separates signal space from noise space and then estimate 
power spectrum from those spaced: those approaches are 
named as signal subspace and noise subspace methods. 
Two methods are considered – multiple signal classification 
method (MUSIC) and eigenvector method. PSD estimation 
using MUSIC will have the following form.
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MUSIC method is characterized by the occurrence of 
spurious peaks. From the picture, it is easily checked that 
false peak occurred at frequencies near the 35 Hz that is 
because of noise as MUSIC method is sensitive to noise. 

Similar is eigenvector method.  Estimate of PSD using 
eigenvector method will be following: 
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Figure 4. PSD estimation using Eigenvector method

The method again fails to detect close frequencies and 
again shows false peak near the 35 Hz. It should be noted 
that both methods require prior estimation of number of pe-
riodic components. It is clear that the latter constricts their 
abilities to solve problems connected with detecting of peri-
odic components in corrupted signals.

Autoregressive approach for PSD estimation 

Autoregressive model assume output of process linearly de-
pends on its own previous values, it can be represented as

(3)

where c is constant,   is white noise and   are 
parameters, PSD estimation for given signal with noise vari-

ance  will be 

 
Despite the fact that AR spectral estimation is consid-

ered as high resolution methods, one of the basic problems 
of AR model is determining the order of equation (3), as 
choosing the correct order leads to incorrect estimation of 
PSD. Generally order is defined between from N/3 to N/2, 
where N is sample length. Matlab has several built in func-
tion for estimation of power spectrum using AR model, one 
of them is pyulear, which estimates power spectrum using 
Yule-Walker equations. It derives an all-pole model to repre-
sent the spectrum, so the correct choice of the model order 

p is crucial. Spectrum using pyulear method will have the 
following form:
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Figure 5. PSD estimation using pyulear method

From Fig.5 it is easy to see that PSD estimation using 
pyulear method is insufficient: it could not identify two peaks, 
besides the second peak has not been well separated from 
the first one. We also tested another approach - Burg meth-
od. This method fits an autoregressive (AR) model to the 
signal by minimizing the forward and backward prediction 
errors.

 
Figure 6. PSD estimation using BURG method

Despite the fact that BURG method showed better re-
sult than pyulear, it still cannot identity forth frequency.

During the analysis of all these procedures, we can see 
that sample size has very great effect on correct estimation 
of Power spectrum density, small data length basically caus-
es incorrect and incomplete estimation and finally spectral 
resolution ability of above mentioned methods will be very 
low.

SVD approach for Hankel type of matrix

Let us consider following Data matrix 
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]1[...]3[]2[
][...]2[]1[
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where x[1], x[2],…,x[N] are samples of the time series and N 
– number of samples. SVD decomposition of the Data matrix 
allows obtaining both left and right singular vectors of matrix 
Xd.  It is significant to note that sizes of the matrix were 
taken as 275×20. After concatenation of the first and the 
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third left and right singular vectors value of time of singular 
unfolding will be equal to  Ts =5.5 sec (Ts= 275*2*0.01). The 
latter that means that the resolution limit now will be fr=0.18. 
It has decisive meaning for improving resolution capacity. In 
the Fig. 7 the result of PSD of new time series obtained by 
means of concatenation of the first and the third left and right 
singular vectors are shown.

Figure 7. Concatenation of first and third singular vectors and their 
PSD estimation

Here we introduce a criterion for estimating the reliable 
separation of the two peaks of a pseudospetrum. It is as-
sumed that the two peaks corresponding to two periodic 
deterministic components are separated, if a “dip” notch be-
tween them not less than 3 dB. Therefore as a criterion of 
separation of two peaks one should use the following coef-
ficient of separability

0.3( )
( ) 10 ( )
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where )( jfP  - the value of a smaller peak (between two 
comparable ones) at the frequency fj;

 )( jfP  - value of notch at frequency fi. 

Usage of the coefficient of separability shows that mini-
mal of them is equal

0.311.50( ) 10
2.33

S f = >

which proves that all  frequencies were separated with suf-
ficient reliability.

Results 

Using the new approach for stationary signal analysis 
showed, that spectral resolution ability of  periodic signal 
highly depends on its  total observation time. For instance, 
if we compare total observation time of original signal to the 
new one, we can see that for original signal total observation 
time is 2.94 sec, while  for  new signal formed by concatena-
tion of left singular vectors, we will get signal with observa-
tion time 5.5 sec, which is approximately 2 times of  original 

signals time. In other words, we have 100% increase of  ob-
servation time, as  long frequency resolution limit and  total 
observation time are reciprocal to each other, we are getting 
stronger ability to resolve (separate) components that are 
too much close to each other. Furthermore, we can easily 
detect that methodology based on singular value decompo-
sition plays role as a filter, which means that in new time 
series level of noise  is significantly reduced, while power of 
signal is increased, all these results  prove that  new method 
based on singular value decomposition is statistically stable 
and  reliable.

Conclusion 

In this article, it was shown that increasing spectra resolu-
tion by concatenating signal eigenvectors  is also applicable 
for stationary signal that will assign this procedure universal 
character, which means that it overcomes disadvantages 
of existed methods connected to spectral resolution ability. 
Therefore, the method presented in this article can be used 
both for nonstationary and stationary signals, to significantly 
increase resolving capacity.
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